
Chapter 4

Optimized Implementation of

Logic Functions

• Logic Minimization

• Karnaugh Maps

• Systematic Approach for Logic Minimization

• Minimization of Incompletely Specified Functions

• Tabular Method for Minimization

• Practical Considerations

Chapter 4-2

Logic Minimization
• Goal: find the optimum implementation of logic function.

• The cost criteria for determining the optimum (lowest cost) implementation

may be defined by the designer, for example:

– Hardware cost, measured as total number & size of logic gates

– Propagation delay (from inputs to outputs)

• Worst case

• Average

– Design time (effort)

• For example quick product prototypes may be required in initial phases of a project with

optimizations applied later

• Equally optimal but different solutions are possible

• We consider two-level realizations of logic functions (eg. SOP or POS)

• Different logic minimization techniques:

– Algebraic Manipulation

– Karnaugh Maps (typically for functions of max 5 or 6 variables)

– Tabular Method

– Heuristic Techniques, eg. Espresso

Chapter 4-3

Karnaugh Maps

(a) Truth table of 3-variable function

x
1

x
2

0 0

0 1

1 0

1 1

m 0

m 1

m 3

m 2

f

x
2

0

1

0 1

m 0 m 2

m 3 m 1

x
1

(b) Karnaugh map

(a) Truth table of 4-variable function

(b) Karnaugh map

x
1

x
2

x
3 00 01 11 10

0

1

m
0

m
1

m
3

m
2

m
6

m
7

m
4

m
5

x
2

x
3

0 0

0 1

1 0

1 1

m
0

m
1

m
3

m
2

0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

m
4

m
5

m
7

m
6

x
1 f

Chapter 4-4

Karnaugh Maps

(a) The function f (x1, x2, x3) = Σ m(0, 2, 4, 5, 6).

(b) SOP minimization of f using K-map

x1x2
x3

1 1

0 0

1 1

0 1
f x3 x

1
x2+=

00 01 11 10

0

1

Chapter 4-5

Karnaugh Maps

(a) The function f (x1, x2, x3) = Σ m(1, 4, 5, 6).

f x1x3 x2x3+=

x1x2
x3

0 0

1 0

1 1

0 1

(b) SOP minimization of f using K-map

00 01 11 10

0

1

Chapter 4-6

Karnaugh Maps

x
1
x
2

x
3
x
4 00 01 11 10

00

01

11

10

x 2

x 4

x 1

x 3

m 0

m 1 m 5

m 4 m 12

m 13

m 8

m 9

m 3

m 2 m 6

m 7 m 15

m 14

m 11

m 10

Figure 4.6. A four-variable Karnaugh map.

Chapter 4-7

Karnaugh Maps

x 1 x 2
x 3 x 4

1

00 01 11 10

0 0 1

0 0 0 0

1 1 1 0

1 1 0 1

00

01

11

10

x 1 x 2
x 3 x 4

1

00 01 11 10

1 1 0

1 1 1 0

0 0 1 1

0 0 1 1

00

01

11

10

x 1 x 2
x 3 x 4

0

00 01 11 10

0 0 0

0 0 1 1

1 0 0 1

1 0 0 1

00

01

11

10

x 1 x 2
x 3 x 4

0

00 01 11 10

0 0 0

0 0 1 1

1 1 1 1

1 1 1 1

00

01

11

10

f 1 x 2 x 3 x 1 x 3 x 4 + =

Figure 4.7. Examples of four-variable Karnaugh maps.

Chapter 4-8

Karnaugh Maps
x
1
x
2

x
3
x
4 00 01 11 10

1 1

1 1

1 1

00

01

11

10

x
1
x
2

x
3
x
4 00 01 11 10

1

1 1

1 1

1 1

00

01

11

10

f
1

x 1 x 3
x
1
x 3 x 4

x
1
x 2 x 3 x 5

+ + =

x
5

1 = x
5

0 =

Figure 4.8. A five-variable Karnaugh map.

Chapter 4-9

Systematic Approach for Logic Minimization

• Intuitive strategy: find as few and as large as possible groups of 1s
that cover all cases where the function has a value of 1.

• Each group of 1s represented by a single product term.

• The larger the group of 1s, the fewer the number of variables in the
corresponding product term.

• To describe the systematic approach for logic minimization,
precisely define terminologies:

• Literal - Each appearance of a variable in either normal or
complemented form.

• Implicant – a product term p is said to be implicant of f iff for all input
combination for which p evaluates to 1 f also evaluates to 1.

• The most basic implicants of f are its minterms.

• Prime Implicant – an implicant that can not be reduced (by
combination) to another one with fewer literals.

• It is not possible to delete any literal in a prime implicant and still
have a valid implicant.

Chapter 4-10

Systematic Approach for Logic Minimization

• Cover – A collection of implicants that account for all valuations for

which a given function is equal to 1 is called a cover of that function.

• Cover defines a particular implementation of the function. A number

of different covers exist for a logic function. Example:

– A set of all minters for which f = 1 is a cover.

– A set of all prime implicants is a cover.

• Cost – the logic minimization criteria.

• For our purpose, we define the cost of a logic circuit as the number

of gates plus the total number of inputs to all gates in the circuit.

• In general, the larger a circuit, the more important the cost issue

becomes.

• Assumption: the primary input variables are available in both normal

and complemented forms at zero cost. This is true, for example, in

many PLDs.

Chapter 4-11

Systematic Approach for Logic Minimization

• The lowest-cost implementation is achieved when the cover of a
given function consists of prime implicants.

• How to determine the minimum-cost subset of prime implicants that
will cover the function?

• If a prime implicant includes a minterm that is not included in any
other prime implicant, such minterm is called distinguished 1-cell.

• A prime implicant containing one or more distinguished 1-cells is
called essential prime implicant, and it must be included in the cover

• Steps of finding minimum-cost circuit:

1. Generate all prime implicants for the given function f

2. Find the set of essential prime implicants

3. If the set of essential prime implicants covers all valuations for

which f = 1, then this set is the desired cover of f. Otherwise,

determine the non-essential prime implicants that should be

added to form a complete minimum-cost cover.

Chapter 4-12

Systematic Approach for Logic Minimization

• Example: Find the prime implicants, distinguished 1-cells, essential prime

implicants and the minimum SOP representation for each of the following

functions

x
1
x
2

x
3
x
4 00 01 11 10

1 1

1 1

1 1

00

01

11

10

x 1 x 3

1 1

1

x
3
x
4

x 1 x 2
x
4

x 2 x 3

x
2
x
3
x
4

x
1
x
2

x
3
x
4 00 01 11 10

1

1 1 1 1

1

00

01

11

10

x
1
x 2 x 4

1

1

x 3 x 4

x
1
x
2
x
4

x
1
x 2 x 3

x
1
x
2
x 3

x
1
x
3
x
4

Figure 4.10. Four-variable function f (x1,…, x4) =

Σ m(2, 3, 5, 6, 7, 10, 11, 13, 14).

Figure 4.11. The function f (x1,…, x4) =

Σ m(0, 4, 8, 10, 11, 12, 13, 15).

Chapter 4-13

Systematic Approach for Logic Minimization

• Sometimes there may not be any essential prime implicants at all.

Alternative solutions of equal weight possible.

x1 x 2
x 3 x 4 00 01 11 10

1

1

1

1

1

1

00

01

11

10 1

1

x 1 x 3 x 4

x 2 x 3 x 4

x 2 x 3 x 4

x 1 x 3 x 4

x 1 x 2 x 4 x 1 x 2 x 4

x 1 x 2 x 3 x 1 x 2 x 3

Figure 4.12. The function f (x1,…, x4) =

Σ m(0, 2, 4, 5, 10, 11, 13, 15).

Chapter 4-14

Systematic Approach for Logic Minimization

• Minimization of POS. Consider the maxterms for which f = 0 and combine

them into sum terms that are of the largest groups possible. Then form the

product of the minimum-cost cover of the sum terms.

• Alternatively, find the minimum-cost SOP of the complement of f, and then

apply DeMorgan’s theorem to the expression to obtain the minimum-cost

POS realization of f.

x
1
x
2

x
3

1

00 01 11 10

0

1

1 0 0

1 1 1 0

x 1 x 2 + ()

x 1 x 3 + ()

x
1

x
2 x

3
x
4

0

00 01 11 10

0 0 0

0 1 1 0

1 1 0 1

1 1 1 1

00

01

11

10

x 2 x 3 + ()

x
3

x
4+()

x 1 x 2 x 3 x 4 + + +()

Figure 4.13. POS minimization of f (x1, x2, x3) =

ΠM(4, 5, 6).
Figure 4.14. POS minimization of f (x1,…, x4) =

ΠM(0, 1, 4, 8, 9, 12, 15).

Chapter 4-15

Minimization of Incompletely

Specified Functions
• A function that has don’t care conditions is said to be incompletely

specified. This happens, for example, if certain input conditions can

never occur.

• Don’t cares can be used to advantage in the design of logic circuits.

Example: Find the simplest SOP and POS for the following function.
x
1

x
2

x
3

x
4

0

00 01 11 10

1 d 0

0 1 d 0

0 0 d 0

1 1 d 1

00

01

11

10

x 2 x 3

x 3 x 4

(a) SOP implementation

x1 x
2

x
3

x
4

0

00 01 11 10

1 d 0

0 1 d 0

0 0 d 0

1 1 d 1

00

01

11

10

x 2 x 3 + ()

x 3 x 4 + ()

(b) POS implementation

Figure 4.15. Two implementations of the function f (x1,…, x4) =

Σ m(2, 4, 5, 6, 10) + D(12, 13, 14, 15).

Chapter 4-16

Tabular Method for Minimization
• The technique described here is called Quine-McClusky methd.

• We will use cube representation for the prime implicants.

• This method involves two major tasks:

1) Generation of all prime implicants of the logic function

2) Determination of a minimum-cost cover from all the prime implicants

• The steps are detailed below:
1. Generate all the prime implicants by successive pairwise comparison of the cubes

2. Derive a cover table which indicates the minterms of f covered by each prime implicant

3. Include the essential prime implicants (if any) in the final cover and reduce the table by
removing both these prime implicants and the covered minterms

4. Use the concept of row and column dominance to reduce the cover table further. A
dominated row is removed only if the cost of its prime implicant is greater than or
equal to the cost of the dominating row’s prime implicant.

5. Repeat steps 3 and 4 until the cover table is either empty or no further reduction is
possible

6. If the reduced cover table is not empty, then use the branching approach to determine
the remaining prime implicants that should be included in a minimum-cost cover

Chapter 4-17

Tabular Method for Minimization
Example: Determine all the prime implicants of the function defined by

f (x1,…, x4) = Σm(0, 4, 8, 10, 11, 12, 13, 15)

• Next find a minimum-cost cover for f.

Chapter 4-18

Final minimal cover of f is given by: C =

Thus, the minimum-cost SOP for f is: f =

Chapter 4-19

Tabular Method for Minimization
• The tabular method can also be used for minimization of functions

with don’t care conditions.

• Example: f (x1,…, x4) = Σm(0, 2, 5, 6, 7, 8, 9, 13) + D(1, 12, 15)

Chapter 4-20

Final minimal cover of f is given by: C =

Thus, the minimum-cost SOP for f is: f =

Chapter 4-21

Tabular Method for Minimization
• In the following example, there are no essential prime

implicants and no dominant rows or colums. Moreover, all

prime implicants have the same cost. In this case the concept

of branching is used.

f (x1,…, x4) = Σm(0, 3, 10, 15) + D(1, 2, 7, 8, 11, 14)

Chapter 4-22

Practical Considerations
• The Tabular method is relatively easy to understand but has some

drawbacks if considered for CAD implementation.

• The main difficulty is that the number of cubes that must be

considered in the process can be extremely large as it first tries to

obtain all the prime implicants of the function.

• Heuristic techniques that produce good results in reasonable time

are preferred specially for functions of large number of variables.

• The Espresso algorithm from UC Berkley is one such example.

• CAD tools provide logic synthesis software that can be used to

target various types of chips, such as PLDs, gate arrays, standard

cells, and custom chips.

• The process in logic design & implementation by such tools include:

� Technology-independent logic synthesis

� Technology mapping

