
Chapter 2

Introduction to Logic Circuits

• Logic functions and circuits

• Boolean algebra

• Synthesis of digital circuits

• Introduction to CAD tools

• Introduction to VHDL

Chapter 2-2

Figure 2.6. A truth table for the AND and OR operations.

Logic functions and Circuits

x1 and x2 are binary variables, that may take on only one of two

Possible values, i.e., 0 or 1

Chapter 2-3

(a) AND gates

(b) OR gates

x x

x
1
x
2

x
n

x
1

x
2 … x

n
+ + +

x
1
x
2

x
1

x
2

+

(c) NOT gate

Figure 2.8. The basic gates.

x
1
x
2

x
n

x
1
x
2

x
1

x
2 ⋅ x

1
x
2 … x n ⋅ ⋅ ⋅

Chapter 2-4

x 1

x 2

1 1 0 0 → → →

f

0 0 0 1 → → →

1 1 0 1 → → →

0 0 1 1 → → →

0 1 0 1 → → →

A

B

x
1

x
2

f x
1
x
2

, ()

0

1

0

1

0

0

1

1

1

1

0

1

(b) Truth table

A B

1 0

1 0

0 0

0 1

(a) Network that implements f = x1’ + x1 · x2

1
0
1
0
1
0
1
0
1
0

x 1

x 2

A

B

f
Time

(c) Timing diagram

1 1 0 0 → → →0 0 1 1 → → →

1 1 0 1 → → →
0 1 0 1 → → → g

x
1

x
2

(d) Network that implements g = x1’ + x2

Figure 2.10. An example of logic networks.

Chapter 2-5

Boolean Algebra

• Axioms of Boolean Algebra

A1) 0 · 0 = 0 A1’) 1 + 1 = 1

A2) 1 · 1 = 1 A2’) 0 + 0 = 0

A3) 0 · 1 = 1 · 0 = 0 A3’) 1 + 0 = 0 + 1 = 1

A4) if x = 0, then x’ = 1 A4’) if x = 1, then x’ = 0

Chapter 2-6

Boolean Algebra

• Single variable theorems

T1) x · 0 = 0 T1’) x + 1 = 1

T2) x · 1 = x T2’) x + 0 = x

T3) x · x = x T3’) x + x = x

T4) x · x’ = 0 T4’) x + x’ = 1

T5) x’’ = x

Chapter 2-7

Boolean Algebra
• Two and three variable theorems
T6) x · y = y · x T6’) x + y = y + x

T7) x · (y · z) = (x · y) · z T7’) x + (y + z) = (x + y) + z

T8) x · (y + z) = x · y + x · z T8’) x + y · z = (x + y) · (x + z)

T9) x + x · y = x T9’) x · (x + y) = x

T10) x · y + x · y’ = x T10’) (x + y) · (x + y’) = x

T11) (x · y)’ = x’ + y’ T11’) (x + y)’ = x’ · y’

T12) x + x’ · y = x + y T12’) x · (x’ + y) = x · y

T13) x · y + y · z + x’ · z = x · y + x’ · z

T13’) (x + y) · (y + z) · (x’ + z) = (x + y) · (x’ + z)

Precedence rule: in the absence of parentheses,
operations in logic expressions must be performed in the
order: NOT, AND, and then OR

Chapter 2-8

Boolean Algebra
• Principle of duality: given a logic expression its
dual is obtained by replacing all + operators with
· operators, and vice versa, and by replacing all 0s with
1s, and vice versa.

• The dual of any true statement (axiom or theorem) in
Boolean algebra is also true.

• T6 & T6’ are called Commutative property

• T7 & T7’ are called Associative property

• T8 & T8’ are called Distributive property

• T9 & T9’ are called Absorption property

• T10 & T10’ are called Combining property

• T11 & T11’ are called DeMorgan’s theorem

• T13 & T13’ are called Consensus theorem

Chapter 2-9

Boolean Algebra

Example: Apply theorems of Boolean Algebra to prove that

the left and right hand sides of the following logic

equation are identical.

x1 · x3’ + x2’ · x3’ + x1 · x3 + x2’ ·x3 = x1’ · x2’ + x1 · x2 + x1 · x2’

Chapter 2-10

Boolean Algebra

• The Venn Diagram
– Graphical illustration of various operations and
relations in the algebra of sets

– A set s is a collection of elements that are said to be
members of s

– In Venn diagram the elements of a set are
represented by the area enclosed by a square, circle
or ellipse

– In Boolean algebra there are only two elements in the
universe, i.e. {0,1}. Then the area within a contour
corresponding to a set s denotes that s = 1, while the
area outside the contour denotes s = 0

– In a Venn diagram we shade the area where s = 1

Chapter 2-11

x

Boolean Algebra

x y

z
x

x y x y

x x x

(a) Constant 1 (b) Constant 0

(c) Variable x (d)

(e) (f)

(g) (h)

x y ⋅ x y +

x y z + ⋅ x y ⋅

y

x

x y

z

x y

z

x y

z

x y

z

x y

z

x y

z

x x y ⋅

x y ⋅ x + z ⋅ x y z + () ⋅

(a) (d)

(c) (f)

x z ⋅ y z + (b) (e)

Figure 2.12. The Venn diagram representation.
Figure 2.13. Verification of the distributive property

x · (y + z) = x · y + x · z

Chapter 2-12

x y

z

y x

z

x y

z

x y ⋅

y z ⋅

x z ⋅

x y

z

x y ⋅

x y ⋅ x + z y z ⋅ + ⋅

x y

z

x z ⋅

x y ⋅ x + z ⋅

y

z

x

y

z

x

Figure 2.14. Verification of x y · x + z y z = ·+ · x y · x + z·

Chapter 2-13

Synthesis of digital circuits
• Synthesis is the process of generating a circuit that

realizes a functional behavior of a logic system from a

given description (stated in form of verbal statements,

truth table, K-map, state diagram, etc.)

Example: Synthesize a logic function that realizes the

following truth table. Use AND, OR, and NOT gates

Figure 2.15. A function to be synthesized.

Chapter 2-14

Synthesis of digital circuits

f

(a) Canonical sum-of-products

f

(b) Minimal-cost realization

x 2

x 1

x 1
x 2

Figure 2.16. Two implementations of a function in Figure 2.15.

Chapter 2-15

Synthesis of digital circuits
Terminologies:

• Literal: a variable or the complement of a variable

• Product term: a single literal or logical product (AND) of two or more literals

• n-variable minterm: a product term with n literals. It assumes a value of 1 for exactly
one row of a function’s truth table (i.e. input combination)

• Sum-of-products (SOP): logical sum (OR) of product (AND) terms

• Canonical SOP: An SOP where each product term is a minterm.

• Sum term: a single literal or a logical sum of two or more literals.

• n-variable maxterm: a sum term with n literals. It assumes a value of 0 for exactly
one row of a function’s truth table (i.e. input combination)

• Product-of-sums (POS): is logical product of sum terms

• Canonical POS: A POS where each sum term is a maxterm

Chapter 2-16

Synthesis of digital circuits

Figure 2.17 Three-variable minterms and maxterms.

Chapter 2-17

Synthesis of digital circuits
Example: For the three variable function given by the following truth table, determine the

minterms, maxterms, canonical SOP, canonical POS, minterm list or on-set, maxterm

list or off-set, minimal SOP and minimal POS by algebraic manipulations.

Figure 2.18. A three-variable function.

Chapter 2-18

Synthesis of digital circuits

Figure 2.19. Two realizations of the function in Figure 2.18.

f

(a) A minimal sum-of-products realization

f

(b) A minimal product-of-sums realization

x1

x2

x3

x2

x1
x3

Chapter 2-19

Synthesis of digital circuits
• NAND and NOR gates and their DeMorgan equivalent

representations
x
1

x
2

x
n

x
1

x
2

x
1

x
2

⋅ x
1

x
2
… x

n
⋅ ⋅ ⋅

(a) NAND gates

x
1

x
2

x
n

x
1

x
2 … x

n
+ + +

x
1

x
2

x
1

x
2

+

(b) NOR gates

Chapter 2-20

Synthesis of digital circuits

x 1

x 2

x 1

x 2

x 1

x 2

x 1

x 2

x 1

x 2

x 1

x 2

x 1 x 2 x 1 x 2 + = (a)

x 1 x 2 + x 1 x 2 = (b)

Figure 2.21. DeMorgan’s equivalents of NAND and NOR gates.

Chapter 2-21

Synthesis of digital circuits
• Converting a AND-OR realization of an SOP to a NAND-NAND realization

• Converting a OR-AND realization of a POS to a NOR-NOR realization

x 1
x 2

x 3
x 4
x 5

x 1
x 2

x 3
x 4
x 5

x 1

x 2

x 3

x 4

x 5

x 1

x 2

x 3

x 4

x 5

Chapter 2-22

Synthesis of digital circuits
Example: Synthesize a logic circuit

from a verbal description of a

problem for a three-way light

control (section 2.8.1, pg. 52)
f

(a) Sum-of-products realization

x1

x3

x2

(b) Product-of-sums realization

f

x3

x1

x2

Exercise: Convert the SOP and POS

circuit realizations to NAND-NAND and

NOR-NOR circuits, respectively.

Chapter 2-23

Introduction to CAD tools
• Computer Aided Design (CAD) tools automate
the processes of:
– Design

– Synthesis

– Optimization

– Simulation:
• Functional

• Timing

– Physical implementation

of logic circuits on target devices

• Quartus II from Altera Corporation is such
software used in this course.

Chapter 2-24

Introduction to CAD tools
• Design entry: description of what the desired circuit is

supposed to do and the formation of its general
structure. This step of a design requires design
experience & intuition so it is done by a designer.

– Schematic Capture

• graphical entry

– Hardware Description Language (eg. VHDL, Verilog, ABEL)

• Computer program describing how a hardware should behave

• VHDL & Verilog are industry standards and thus portable to different
target hardware and CAD tools

• Designer can focus on the functionality of the desired circuit without
being overly concerned about the implementation technology

� Both Schematic & HDL design entry methods allow modular and
hierarchical designs to manage system complexity

Chapter 2-25

Introduction to CAD tools
• Synthesis – process of generating a logic circuit from an

initial specification given in schematic diagram or HDL.

– It involves compiling or translating the design entry (eg. VHDL)
into a set of logic expressions that describe the logic functions

– Often the synthesis process is followed by optimization for
specified goals: HW cost or time delay

• Functional Simulation – used to verify that the design will
function as expected

– Assumes that the logic equations generated during synthesis will
be implemented with perfect gates with no propagation delays

– Test sequences are applied for which the simulator generates
outputs

Chapter 2-26

Introduction to CAD tools
• Physical Design – the tool determines exactly how to

implement the circuit on a given chip

– Maps a circuit specified in logic expressions into a realization
that makes use of the resources available on the target chip

– Determines the placement of specific logic elements & their
interconnection

• Timing Simulation – a simulation that takes into account
the actual delays of signals as they are processed by
the logic elements and propagate through the wires

– Helps determine if the generated circuit satisfies the timing
requirements of the specification

• Chip Configuration or programming – this step involves
the implementation of the circuit on an actual target chip

Chapter 2-27Figure 2.29. A typical CAD system.

Design conception

VHDLSchematic capture

DESIGN ENTRY

Design correct?

Functional simulation

No

Yes

No

Synthesis

Physical design

Chip configuration

Timing requirements met?

Timing simulation

Chapter 2-28

Introduction to VHDL
• VHDL = Very High Speed Integrated Circuit (VSHIC)

Hardware Description Language, an IEEE standard language

• Original standard was adopted in 1987 and called IEEE 1076.
Revised standard adopted in 1993 and called IEEE 1164. It
was subsequently updated in 2000 and 2002.

• Initially intended as a documentation language for describing
the structure of complex circuits, and for modeling the
behavior of digital circuits for simulation.

• It has now become a popular tool for design entry in CAD
systems, which synthesize the VHDL code into hardware
implementation.

• VHDL is a sophisticated language so only a subset of features
for use in synthesis will be covered in this course. The
required features will be introduced when needed.

Chapter 2-29

Introduction to VHDL
• Digital signals in VHDL are represented by a data object

of type BIT.

• BIT objects can have only one of two possible values: 0
or 1.

• A VHDL construct called entity is used to declare the
input and output interfaces of a circuit or module.

• The entity must be assigned a name.

• The input and output signals for an entity are called its
ports, and they are identified by the keyword PORT.

• Each port has an associated mode that specifies
whether it is input (IN) to the entity or output (OUT) from
the entity.

• Each port is a signal hence has an associated type.

Chapter 2-30

Introduction to VHDL

Figure 2.30. A simple logic function.

f

x3

x1
x2

ENTITY example1 IS

PORT (x1, x2, x3 : IN BIT ;

f : OUT BIT) ;

END example1 ;

Figure 2.31. VHDL entity declaration for the circuit in Figure 2.30.

Chapter 2-31

Introduction to VHDL

• An entity specifies the input and output signals for a
circuit, but no information about its internal functions.

• The circuit’s functionality must be specified with a VHDL
construct called architecture.

• An architecture must be given a name and attached to a
corresponding entity.

• VHDL provides built-in Boolean operators (AND, OR,
NOT, NAND, NOR, XOR, and XNOR) that could be used
for describing the logical functions of an architecture

• VHDL signal assignment operator <= could be used to
assign the result of a logic expression on the right-hand
side of the operator to an output signal on the left.

Chapter 2-32

Introduction to VHDL

Figure 2.33. Complete VHDL code for the circuit in Figure 2.30.

As a simple analogy, an entity is equivalent to a symbol in a schematic

Diagram and the architecture specifies the logic circuitry

Chapter 2-33

Introduction to VHDL

