Chapter 2
Introduction to Logic Circuits

* Logic functions and circuits
» Boolean algebra

« Synthesis of digital circuits
* Introduction to CAD tools

* Introduction to VHDL

Logic functions and Circuits

X, and x, are binary variables, that may take on only one of two
Possible values, i.e., O or 1

I 9 1 *TI9 I —+ i)

—_ O O
—_ O = O
—_— o O O
ot et O

AND OR

Figure 2.6. A truth table for the AND and OR operations.

Chapter 2-2

(b) OR gates

«— >o—

(c) NOT gate

Figure 2.8. The basic gates. Chapter 2-3

A X% f()ﬁ’)g) A| B
f 0 0 1 o
\ B 0o 1 1 1{0
/ 1 0 0 01l 0
1 1 1 ol 1
(a) Network that implements f = x,” + x, - X,
(b) Truth table
X1 (1)
X2 (1)
A g
1
0
1
o — = Time
(c) Timing diagram
X4 {>O
g
*2
(d) Network that implements g = x,” + X,
Chapter 2-4

Figure 2.10. An example of logic networks.

Boolean Algebra

« Axioms of Boolean Algebra

A1)0-0=0 A1)1+1=1
A2)1-1=1 A2)0+0=0
A3)0-1=1-0=0 A3)1+0=0+1=1
A4)ifx=0,thenx’ =1 A4)ifx=1,thenx =0

Chapter 2-5

Boolean Algebra

» Single variable theorems

T1)x-0=0 T1)x+1=1
T2)x-1=x T2)x+0=x
T3)x-x=x T3)x+x=X
T4)x-x =0 T4)x+x =1
T95) X" =X

Chapter 2-6

Boolean Algebra

 Two and three variable theorems
Te)X-y=y-X T6)x+y=y+Xx
T7)x-(y-z)=(x-y)-z Tr)x+(y+z)=(x+y)+z
T8)x-(y+z)=x-y+x-z T8)x+y-z=(x+y) (X+2z)

T9)x+Xx-y=X T9) x-(x+y)=x
T10)x-y+Xx-y =X T10)(x+y) - (X+y)=x
T1) (x-y)=x+y TI) (x+y) =x-y
T12)x+ X -y=x+y T12)x - (X +y)=Xx"Yy

T13)x-y+y-z+Xx-z=X"y+X -2
T13) (x+y) - (y+2z)- (X +2)=(x+y) (X' +2)

Precedence rule: in the absence of parentheses,
operations in logic expressions must be performed in the
order: NOT, AND, and then OR

Chapter 2-7

Boolean Algebra

Principle of duality. given a logic expression its

dual is obtained by replacing all + operators with
- operators, and vice versa, and by replacing all Os with
1s, and vice versa.

The dual of any true statement (axiom or theorem) in
Boolean algebra is also true.

T6 & TG are called Commutative property
T7 & T7 are called Associative property
T8 & T8’ are called Distributive property

T9 & T9' are called Absorption property
T10 & T10" are called Combining property
T11 & T11" are called DeMorgan’s theorem
T13 & T13' are called Consensus theorem

Chapter 2-8

Boolean Algebra

Example: Apply theorems of Boolean Algebra to prove that
the left and right hand sides of the following logic
equation are identical.

Xi"Xg Xy " Xg X Xg+ Xy Kg= Xy "Xy X X+ X0 Xy

Chapter 2-9

Boolean Algebra

* The Venn Diagram

— Graphical illustration of various operations and
relations in the algebra of sets

— A set s is a collection of elements that are said to be
members of s

— In Venn diagram the elements of a set are
represented by the area enclosed by a square, circle
or ellipse

— In Boolean algebra there are only two elements in the
universe, i.e. {0,1}. Then the area within a contour
corresponding to a set s denotes that s = 7, while the
area outside the contour denotes s = 0

— In a Venn diagram we shade the area where s = 1

Chapter 2-10

(a) Constant 1

@)

(b) Constant 0

(c) Variable x

Figure 2.12. The Venn diagram representation.

(h) x.-y+z

Boolean Algebra

(a)x

(d) x-y

(b) y+z

(e)x-z

(C) x-(y+2)

Figure 2.13. Verification of the distributive property

(f) x-y+x.z

x - (t+tz)=x-y+tx-z

&

Xy

X-y

e

y-z

&

X-y+Xx-z+y.z

X-y+x.z

Figure 2.14. Verification of X-y+XZ+yzZ=xy+XxZz

Chapter 2-12

Synthesis of digital circuits

« Synthesis is the process of generating a circuit that
realizes a functional behavior of a logic system from a
given description (stated in form of verbal statements,
truth table, K-map, state diagram, etc.)

Example: Synthesize a logic function that realizes the
following truth table. Use AND, OR, and NOT gates

r1 x2 || f(x1,x2)

—_— O O
—~ O = O
—_ O =

Figure 2.15. A function to be synthesized.
Chapter 2-13

Synthesis of digital circuits

X1
X2

Y

=) >—1

Y

LﬁU 9

(a) Canonical sum-of-products

) O

(b) Minimal-cost realization

Figure 2.16. Two implementations of a function in Figure 2.15.

Chapter 2-14

Synthesis of digital circuits

Terminologies:

« Literal: a variable or the complement of a variable
* Product term: a single literal or logical product (AND) of two or more literals

* n-variable minterm: a product term with n literals. It assumes a value of 1 for exactly
one row of a function’s truth table (i.e. input combination)

« Sum-of-products (SOP): logical sum (OR) of product (AND) terms
« Canonical SOP: An SOP where each product term is a minterm.
« Sum term: a single literal or a logical sum of two or more literals.

* n-variable maxterm: a sum term with n literals. It assumes a value of O for exactly
one row of a function’s truth table (i.e. input combination)

* Product-of-sums (POS): is logical product of sum terms

 Canonical POS: A POS where each sum term is a maxterm Chapter 2-15

Synthesis of digital circuits

Row
number | 1 x2 X3 Minterm Maxterm
0 0 0 0 mo = Tligig M() =T + X9 + T3
1 0 0 1 mi = Tligajg M1 =T +T9 + fg
2 0 1 0 mo = legig MQ =T + Ty + I3
3 0 1 1 ms = Tlilfgafg M3 =T —I—TQ + Tg
4 1 0 0 my = 561?2?3 M4 = Tl + To + X3
H 1 0 1 my = 331?2333 M5 =71 +xo + Tg
0 1 1 0 Mg = 331332T3 M6 =T + T2 + I3
7 1 1 1 my = 193 M7 = Tl —I—TQ + Tg

Figure 2.17 Three-variable minterms and maxterms.

Chapter 2-16

Synthesis of digital circuits

Example: For the three variable function given by the following truth table, determine the
minterms, maxterms, canonical SOP, canonical POS, minterm list or on-set, maxterm
list or off-set, minimal SOP and minimal POS by algebraic manipulations.

Row
number | x1 xo x3 || f(x1,T2,x3)
0 0O 0 O 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5) 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Figure 2.18. A three-variable function.

Chapter 2-17

Synthesis of digital circuits

X2 {>°—
e A

(a) A minimal sum-of-products realization

O

HW

Kk

(b) A minimal product-of-sums realization

Figure 2.19. Two realizations of the function in Figure 2.18.

Chapter 2-18

Synthesis of digital circuits

« NAND and NOR gates and their DeMorgan equivalent

representations

X1_

X2_

Xy T .
. — X,I-X2 . X1-X2-...-Xn
2 Q

(a) NAND gates

(b) NOR gates
Chapter 2-19

Synthesis of digital circuits

o Do .
iD= =D D

(@) XqXo = ;(1 +)-(2

X1
X9

X2

X4 * {>c — X; —O
) e g 1 - D

(b) X1t Xy = ;(1)—(2

Figure 2.21. DeMorgan’s equivalents of NAND and NOR gates.

Chapter 2-20

Synthesis of digital circuits

Converting a AND-OR realization of an SOP to a NAND-NAND realization
- -
X3 | X3 T 14
- =D
I I

X5 X5

Converting a OR-AND realization of a POS to a NOR-NOR realization
—) > A—
X2
X3 } X3 }
X5

X5

Chapter 2-21

Synthesis of digital circuits

Example: Synthesize a logic circuit
from a verbal description of a
problem for a three-way light
control (section 2.8.1, pg. 52)

=

&
p—

&
[\
&
w
e

T A4 L

X, 1

Y YYY

(a) Sum-of-products realization

— 1

—YVYY

viv

Bl
| f

_ O OO o
—_—_ O O = OO
_ O O O O
—H OO, ORFRRFRO

Eﬁb

Exercise: Convert the SOP and POS
circuit realizations to NAND-NAND and

NOR-NOR circuits, respectively. (b) Product-of-sums realization

Chapter 2-22

Introduction to CAD tools

 Computer Aided Design (CAD) tools automate
the processes of:
— Design
— Synthesis
— Optimization
— Simulation:
* Functional
* Timing
— Physical implementation
of logic circuits on target devices

e Quartus Il from Altera Corporation is such
software used in this course.

Chapter 2-23

Introduction to CAD tools

» Design entry. description of what the desired circuit is
supposed to do and the formation of its general
structure. This step of a design requires design
experience & intuition so it is done by a designer.

— Schematic Capture
« graphical entry

— Hardware Description Language (eg. VHDL, Verilog, ABEL)
» Computer program describing how a hardware should behave

« VHDL & Verilog are industry standards and thus portable to different
target hardware and CAD tools

» Designer can focus on the functionality of the desired circuit without
being overly concerned about the implementation technology

» Both Schematic & HDL design entry methods allow modular and
hierarchical designs to manage system complexity

Chapter 2-24

Introduction to CAD tools

« Synthesis — process of generating a logic circuit from an
initial specification given in schematic diagram or HDL.

— It involves compiling or translating the design entry (eg. VHDL)
into a set of logic expressions that describe the logic functions

— Often the synthesis process is followed by optimization for
specified goals: HW cost or time delay

* Functional Simulation — used to verify that the design will
function as expected

— Assumes that the logic equations generated during synthesis will
be implemented with perfect gates with no propagation delays

— Test sequences are applied for which the simulator generates
outputs

Chapter 2-25

Introduction to CAD tools

* Physical Design — the tool determines exactly how to
iImplement the circuit on a given chip

— Maps a circuit specified in logic expressions into a realization
that makes use of the resources available on the target chip

— Determines the placement of specific logic elements & their
Interconnection

« Timing Simulation — a simulation that takes into account
the actual delays of signals as they are processed by
the logic elements and propagate through the wires

— Helps determine if the generated circuit satisfies the timing
requirements of the specification

« Chip Configuration or programming — this step involves
the implementation of the circuit on an actual target chip

Chapter 2-26

Design conception

DESIGN ENTRY

Schematic capture VHDL

Synthesis

Functional simulation

Design correct?

Yes

y
Physical design

Timing simulation

No

Timing requirements met?

Chip configuration

Figure 2.29. A typical CAD system. Chapter 2-27

Introduction to VHDL

VHDL = Very High Speed Integrated Circuit (VSHIC)
Hardware Description Language, an IEEE standard language

Original standard was adopted in 1987 and called IEEE 1076.
Revised standard adopted in 1993 and called IEEE 1164. It
was subsequently updated in 2000 and 2002.

Initially intended as a documentation language for describing
the structure of complex circuits, and for modeling the
behavior of digital circuits for simulation.

It has now become a popular tool for design entry in CAD
systems, which synthesize the VHDL code into hardware
Implementation.

VHDL is a sophisticated language so only a subset of features
for use in synthesis will be covered in this course. The
required features will be introduced when needed.

Chapter 2-28

Introduction to VHDL

Digital signals in VHDL are represented by a data object
of type BIT.

BIT objects can have only one of two possible values: 0
or 1.

A VHDL construct called entity is used to declare the
input and output interfaces of a circuit or module.

The entity must be assigned a name.

The input and output signals for an entity are called its
ports, and they are identified by the keyword PORT.

Each port has an associated mode that specifies
whether it is input (/N) to the entity or output (OUT) from
the entity.

Each port is a signal hence has an associated type.

Chapter 2-29

Introduction to VHDL

-
mP
D

Figure 2.30. A simple logic function.

ENTITY example1 IS
PORT (x1, x2, x3 IN BIT ;
f : OUT BIT);
END example1 ;

Figure 2.31. VHDL entity declaration for the circuit in Figure 2.30.

Chapter 2-30

Introduction to VHDL

An entity specifies the input and output signals for a
circuit, but no information about its internal functions.

The circuit’s functionality must be specified with a VHDL
construct called architecture.

An architecture must be given a name and attached to a
corresponding entity.

VHDL provides built-in Boolean operators (AND, OR,
NOT, NAND, NOR, XOR, and XNOR) that could be used
for describing the logical functions of an architecture

VHDL signal assignment operator <= could be used to
assign the result of a logic expression on the right-hand
side of the operator to an output signal on the left.

Chapter 2-31

Introduction to VHDL

ENTITY examplel IS
PORT (x1, x2,x3 : IN BIT ;
f . OUT BIT) ;
END examplel ;

ARCHITECTURE LogicFunc OF examplel IS
BEGIN

f <= (x1 AND x2) OR (NOT x2 AND x3) ;
END LogicFunc ;

Figure 2.33. Complete VHDL code for the circuit in Figure 2.30.

As a simple analogy, an entity is equivalent to a symbol in a schematic
Diagram and the architecture specifies the logic circuitry

Chapter 2-32

Introduction to VHDL

ENTITY example2 IS
PORT { x1.x2.x3. x4 :IN BIT;
f, & SO BIET)
END examplel :

ARCHITECTURE Logwcbunc OF examplel 15
BRI
f<={x] AND x3) OR (32 AND 54 ;

= (D OR NOT o3) AND WO 2 OR w4 ;

ENDY Logichunc

Figure 2,34 VHDL code for a tour-input function.

.'fl
T_:I

X4
'|'4

Figure 2.35 Logic circuit for the code in Figure 2.34.

Chapter 2-33

