
Kettering FTC Workshop

EW - 2015

FTC – JAVA PROGRAMMING

Workshop 2015
Eric Weber

FRC: 1322, FTC: 5954 & 7032

Kettering FTC Workshop

EW - 2015

Java History
• First appeared in 1995
• Sun Microsystems creates and maintains the core

language
• Community involvement is very high in the

development
• Appears in many small devices
• Want college credit in Computer Science?

– Java is the standard language for AP CS courses

• Most importantly, it is currently the gateway into
other languages
– Know java? You know C, C++, C#, Python, Ruby, Pascal

and many others with minimal understanding

Kettering FTC Workshop

EW - 2015

What you will need?

• Android Studio
– http://developer.android.com/sdk/index.html#top

• FTC_App
– https://github.com/ftctechnh/ftc_app/archive/master.

zip

• Tutorial for setting up phones
– https://github.com/ftctechnh/ftc_app/blob/master/d

oc/tutorial/FTCTraining_Manual.pdf

Kettering FTC Workshop

EW - 2015

If you haven’t followed the instructions
on

http://paws.kettering.edu/~webe3546/

Start Downloading
The process will take a long time to

complete

4

Kettering FTC Workshop

EW - 2015

Introducing the UI

Project Tab

Source Code Editor

Compiler

Kettering FTC Workshop

EW - 2015

Important Definitions

• IDE (Integrated Development Environment):
– Android Studio itself is an IDE. It contains a source

code editor, compiler, and a debugger all in one.

• OP Modes: define how our robots behave
– Teleop and Autonomous modes are now called OP

Modes

• Keywords: Reserved words that Java requires, and
cannot be used as an unique name

Kettering FTC Workshop

EW - 2015

TELEOP EXAMPLE CODE

Will work with the robot being built during this workshop.

Kettering FTC Workshop

EW - 2015

Code Objective:

Don’t write this down yet.
We will cover this line by
line.

Kettering FTC Workshop

EW - 2015

Teleop Mode Example:

• This code is strictly for a simple tele OP mode

• Not optimal for programming a robot with an
autonomous mode

• Equivalent to a ‘Hello World’ for the robot that is
being built in the class rooms upstairs

Kettering FTC Workshop

EW - 2015

Creating an OP Mode:

1) In the Project Tree Navigate:

- FTC APP -> FtcRobotController -> src -> main ->
com.qualcomm.ftcrobotcontroller -> opmodes

3) Right Click on the Folder

4) Go to “New” -> “Java Class”

5) Give it a name

6) Click “OK”

Kettering FTC Workshop

EW - 2015

Edit Class Definition:

• Once we have created our OP Mode, we need to
edit a line immediately.

• Please add “extends OpMode” between the name
of class and the “{“

Kettering FTC Workshop

EW - 2015

Anyone Notice This?

• Then you may auto complete with the
selected word below

• Press the “Tab” key to allow completion.

• A benefit of using an IDE allows easier
functionality

Kettering FTC Workshop

EW - 2015

Important Notes:
• First we are defining a public class

– Classes defines data formatting and procedures
– Public defines how it may be accessed

• In this case, anywhere

• Second we have a unique name for these classes
– Must be unique and not be a keyword

• Third we are extending a parent class (Inheritance)
– We are directly adding onto a class already made
– We also gain the functionality of this class

Kettering FTC Workshop

EW - 2015

Define Properties

• Next we will enter in the following below

• These are what are called properties or fields

– From here on out, we will refer to them as properties

Kettering FTC Workshop

EW - 2015

Important Notes:
• Properties allow us to define data to be used
• In this case we are defining:

– 1 DcMotorController (a class soon to be an object)
– 2 DcMotor (another class soon to be an object)

• Later we will be able to effect the values of the DC
Motors

• In non-OOP languages, these are also known as
variables (RobotC)

• If you want more, you have to define more

Kettering FTC Workshop

EW - 2015

Our first Method

• Methods allow us to perform tasks

• Please enter the next lines after our properties:

Kettering FTC Workshop

EW - 2015

Important Notes:

• First off, @Override allows us to over write a
previous method from OpMode.

– This is one of two methods that MUST be overridden.

– This will always be the first method called once the
ARM button is pressed on the robot controller.

• Second, we are assigning actual objects to the
properties we already have defined

Kettering FTC Workshop

EW - 2015

Important Notes:

• Third, what is hardwareMap?

– It is an object that contains all the hardware mapping
as defined by the configuration files on your Robot
Controller app

– Everything stated by your robot configuration file will
be here. This makes setting up your configuration
correctly and translate it EXACTLY into your java

code.

Kettering FTC Workshop

EW - 2015

Our Second Method

• The second method we must override is the loop()
method.

• Please enter the next lines after our previous
method.

Kettering FTC Workshop

EW - 2015

Important Notes:

• This method is called every time the robot cycles
(approx. 20ms give or take)

• Not where to apply a loop

• Since a part of OpMode, this will be consistent
with autonomous OpModes as well

Kettering FTC Workshop

EW - 2015

Final step: Register your OpMode

• We need to finalize the app by registering our OpMode with the
rest of the program.

• Navigate through the project tab to: ftc_app-master ->
FtcRobotController -> src -> main -> java -> com -> qualcomm ->
ftcrobotcontroller -> opmodes -> FtcOpModeRegister

• Under the register method, type: manager.register(“Tutorial”,
Tutorial.class);

Kettering FTC Workshop

EW - 2015

Important Notes:

• To be able to select your OpMode, it needs to be
added to a list.

• I have already trimmed down the OpModes that
were used as tutorials.

• NullOp will do nothing.

– Good to keep due to any issues that arise.

Kettering FTC Workshop

EW - 2015

Important Definitions:
• Class: Defines data format and procedures

• Properties: Variables defined by the class

• Methods: Procedures that work on inputs or properties

• Inheritance: The ability to extend a class to include more
functionality (methods) or data (properties)

• Overriding: The ability to take a method and change it to
give different functionality

• Constructor: As an object is created, a special method is
always called immediately.

Kettering FTC Workshop

EW - 2015

STRUCTURAL SUGGESTIONS

Ideas to extend your code from Teleop to Autonomous modes

24

Kettering FTC Workshop

EW - 2015

Hierarchy
• Object Oriented Programming’s Greatest

asset is reusability and extensibility.

• Better to define a robot by its actions, then
control it through those actions.

Core
Functions

Test
Zone

Auto
Modes

Teleop
Mode

Kettering FTC Workshop

EW - 2015

Key Ideas on Inheritance

• Inheritance Properties:
– Extending a base class forces the base class to exist,

giving us those methods as well
• Think drive systems, arms, sensors, or timers required

• But know about Private, Public, and Protected

– We only need to override the operation modes we
want.

– For instance, leave initialization for the base class, only
work with loop() in the actual OpModes.

Kettering FTC Workshop

EW - 2015

Important Keys to Note:

• Methods with inheritance

• Overriding (Virtual Methods)

• OpModes

• Encapsulation

Kettering FTC Workshop

EW - 2015

NOW AN OPEN DISCUSSION.

Questions and Suggestions?

What would you like to see

28

Kettering FTC Workshop

EW - 2015

AUTONOMOUS MODE

A method to accomplish tasks in Autonomous mode

29

Kettering FTC Workshop

EW - 2015

State Machines

• For this style of programming, State Machines are
the suggested method.

• Review of State Machines:
– Idea of states: Set of instructions unique to a phase of

a program

– States define what the robot is to do

– Redefine outputs

– Read inputs to trigger next state

Kettering FTC Workshop

EW - 2015

State Machines
• Requirements of a state machine:

– A state variable (usually an enumeration)
– A state selector (always a case-switch operator)
– State triggers (sensors or timers)
– An initial state

Initialize
Drive

Forward
Check

Encoders
Stop

Kettering FTC Workshop

EW - 2015

Enumerations:

• Enumerations are unique names with values
defined behind them

• Common examples include compass directions
(values of NORTH, SOUTH, EAST, and WEST)

• Place above the actual OpMode

Kettering FTC Workshop

EW - 2015

Switch and Case Structure:
• Allows for multiple cases or states to make different

operations
• Selector can take Enumeration’s, Integer’s commonly

Switch Structure – Refers to all
cases

Selector – Selects whatever value
is entered

Case – Different states, as selected
by the selector

Break- Escapes out of structure

Default- If no valid case exists,
default will always be used

Kettering FTC Workshop

EW - 2015

Triggers:

• Usually done by an if statement

– If statements are like case’s, but can easier to define
with logical statements

• Causes a change in our state variable

Kettering FTC Workshop

EW - 2015

Putting it Together:

• We get the following OpMode:

Kettering FTC Workshop

EW - 2015

FINAL REMARKS &
QUESTIONS

Kettering FTC Workshop

EW - 2015

Thank You

Now get out their and program!

