A"} Kettering FTC Workshop

FTC — JAVA PROGRAMMING

Workshop 2015
Eric Weber
FRC: 1322, FTC: 5954 & 7032

mmRa

MID-MICHIGAN ROBOTICS ALLIANCE

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FT1C Java History

First appeared in 1995
Sun Microsystems creates and maintains the core
language

Community involvement is very high in the
development

Appears in many small devices
Want college credit in Computer Science?
— Java is the standard language for AP CS courses

Most importantly, it is currently the gateway into
other languages

— Know java? You know C, C++, C#, Python, Ruby, Pascal
and many others with minimal understanding AQ

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

JIE. What you will need?

 Android Studio

— http://developer.android.com/sdk/index.html#top
* FTC_App
— https://github.com/ftctechnh/ftc app/archive/master.
zip
e Tutorial for setting up phones

— https://github.com/ftctechnh/ftc app/blob/master/d
oc/tutorial/FTCTraining Manual.pdf

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

If you haven’t followed the instructions
on
http://paws.kettering.edu/~webe3546/

Start Downloading
The process will take a long time to
complete

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNULQ/[J‘Y FIRST
EW-2015

Kettering FTC Workshop

FTC

FIRST®Tech Challenge

Introducing the Ul

B FTC APP - [C:\FTC APP] - [FtcRobotController] - .. \FtcRobotControllerisrc\maintjavalcomiqualcommiftcrobotcontroller\opmodes'tutorial java - Android Studio 1.3.2

File Edit View Mavigate Code Analyze Refactor Build Run Tools VC5 Window Help
OH O ¢ }{: O Dc'u Q f—l <& i i FtcRobaotController ~ | P D;g ;“ =4 i-‘ L1 ﬁ ; ? Q
FTCAPP FtcRobotController src ¢ main java com qualcomm ft tcontroller opmoedes © © tutorial
g| G Project - € &= | #- |© | (© tutorialjava x m
o VT AFFITT _
@ N fte_appiml package com.qualcomm.ftcrobotoo ller.opmodes; §
¢ radlew %
=l gradlew.b7 P . t T b 78,
é il local.properties rOJeC a EE o Compller &
2 =l README.md LS -
:I O settings.gradle o
v dternal Libraries] %
'w = Android 4.4.2 Google APls > (C
g # < 1.8 > (C\Program Files\Java')c
§ il Analytics-release-
- il FtcCommon-release-
- il ModernRobotics-release-
7 RobotCore-release- Sou rce Code Ed|t0r
classesjar (library home)
& com.qualcomm.robotcore
4 eventloop
4 cpmode
- ’Ca LinearOpMode
E %% OpMode
= 5 e OpMedeManager
% It OpModeRegister
.;. Ig & Eventloop
Sh 't EventloocpManager
8 Ig & SyncdDevice
E 4 exception
w 4 factory
NI 4 hardware
@_"TODO % 6 Android Terminal = O Messages Event Log [Z] Gradle Console
822 CRLF: UTF-8: v &

[Class 'tuterial' is never used

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY

FIRST
EW - 201

A() Kettering FTC Workshop

FTc c e,
Important Definitions

* IDE (Integrated Development Environment):

— Android Studio itself is an IDE. It contains a source
code editor, compiler, and a debugger all in one.

e OP Modes: define how our robots behave

— Teleop and Autonomous modes are now called OP
Modes

* Keywords: Reserved words that Java requires, and
cannot be used as an unique name

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A"} Kettering FTC Workshop
FTC

FIRST®Tech Challenge

TELEOP EXAMPLE CODE

Will work with the robot being built during this workshop.

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

Kettering FTC Workshop

FTC L
Code Objective:

C Tutorial java x
package com.gqualcomm.ftcrobotcontroller.opmodes;
import com.gqualcomm.rcbotcore.eventloop.opmode.OpMode;

import com.gualcomm.robotcore.hardware.DcMotor;
import com.gualcomm.robotcore.hardware.DcMotorController;

3/20

public class Tutcrial extends OpMode |

P R R R R R R R

pr;i.vate DcMotorController dc drive controller; Don’t Write this down yet.
We will cover this line by

&

private DcMotor de drive left; e'
private DcMotor de drive right;

@0verride
L) public woid init{) {
dc_drive_controller = hardwareMap.dcMoterCentroller.get ("drive controller");
dc_drive left = hardwareMap.dcMotor.get("drive left");
dc_drive right = hardwareMap.dcMotor.get("drive right"):

b
BOverride
@ public woid loop() |
dc_driwve left.setPower (gamepadl.left stick y);
dc_drive right.setPower (gamepadl.right stick y):
t

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FTC
Teleop Mode Example:

* This code is strictly for a simple tele OP mode

* Not optimal for programming a robot with an
autonomous mode

* Equivalent to a ‘Hello World’ for the robot that is
being built in the class rooms upstairs

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FTC ,
Creating an OP Mode:

1) In the Project Tree Navigate:

- FTC APP -> FtcRobotController -> src -> main ->
com.qualcomm.ftcrobotcontroller -> opmodes

3) Right Click on the Folder

4) Go to “New” -> “Java Class”
5) Give it a name

6) Click “OK”

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FTC , Do
Edit Class Definition:

* Once we have created our OP Mode, we need to
edit a line immediately.

* Please add “extends OpMode” between the name
of class and the “{*

public class Tutcrial extends OpMode |

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FTC : '
Anyone Notice This?
ex] |
extends

 Then you may auto complete with the
selected word below

* Pressthe “Tab” key to allow completion.

* A benefit of using an IDE allows easier
functionality

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FTC
Important Notes:

* First we are defining a public class
— Classes defines data formatting and procedures

— Public defines how it may be accessed
* In this case, anywhere

* Second we have a unique name for these classes
— Must be unique and not be a keyword
* Third we are extending a parent class (Inheritance)

— We are directly adding onto a class already made
— We also gain the functionality of this class

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FTC . -
ST Toch Chatloe D ef ine Pro pe rties

* Next we will enter in the following below
* These are what are called properties or fields

— From here on out, we will refer to them as properties

public class Tutorial extends OpMode |

private DcMotor dc driwve left;
private DcMotor de drive right:

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FTC
Important Notes:

Properties allow us to define data to be used

In this case we are defining:
— 1 DcMotorController (a class soon to be an object)
— 2 DcMotor (another class soon to be an object)

Later we will be able to effect the values of the DC
Motors

In non-O0P languages, these are also known as
variables (RobotC)

If you want more, you have to define more

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FTC -
Our first Method

* Methods allow us to perform tasks
* Please enter the next lines after our properties:

Yo . .
[TP .
SVEL L 1dE

public vold init{) |
dc drive contreller = hardwareMap.dcMotorController.get("drive controller”);
de drive left = hardwareMap.dcMotor.get("drive left");
dc drive right = hardwareMap.dcMotor.get("drive right"):

!

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FTC
Important Notes:

e First off, @Override allows us to over write a
previous method from OpMode.
— This is one of two methods that MUST be overridden.

— This will always be the first method called once the
ARM button is pressed on the robot controller.

* Second, we are assigning actual objects to the
properties we already have defined

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FTC
Important Notes:

* Third, what is hardwareMap?

— It is an object that contains all the hardware mapping
as defined by the configuration files on your Robot
Controller app

— Everything stated by your robot configuration file will
be here. This makes setting up your configuration
correctly and translate it EXACTLY into your java

code.

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop
FTC

FIRST®Tech Challenge

Our Second Method

 The second method we must override is the loop()
method.

* Please enter the next lines after our previous
method.

ey

d0verride
public void loop() |

dc drive left.setPower (gamepadl.left stick y):

dc drive right.setPower (gamepadl.right stick y);
1

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY

FIRST
EW - 2015

A() Kettering FTC Workshop

FTC
Important Notes:

* This method is called every time the robot cycles
(approx. 20ms give or take)

* Not where to apply a loop

* Since a part of OpMode, this will be consistent
with autonomous OpModes as well

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FTC .
"= Final step: Register your OpMode

We need to finalize the app by registering our OpMode with the
rest of the program.

Navigate through the project tab to: ftc_app-master ->
FtcRobotController -> src -> main -> java -> com -> qualcomm ->
ftcrobotcontroller -> opmodes -> FtcOpModeRegister

Under the register method, type: manager.register(“Tutorial”,
Tutorial.class);

public woid register (OpModeManager manager) |

manager.regiscer ("HullOp", NullOp.class):

manager.register ("Tutorial"”, Tutorial.class): M

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FTC
Important Notes:

* To be able to select your OpMode, it needs to be
added to a list.

* | have already trimmed down the OpModes that
were used as tutorials.

* NullOp will do nothing.

— Good to keep due to any issues that arise.

/3%

FIRST
EW - 2015

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY

A() Kettering FTC Workshop

FTC Do
Important Definitions:

Class: Defines data format and procedures
Properties: Variables defined by the class
Methods: Procedures that work on inputs or properties

Inheritance: The ability to extend a class to include more
functionality (methods) or data (properties)

Overriding: The ability to take a method and change it to
give different functionality

Constructor: As an object is created, a special method is
always called immediately.

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop
FTC

FIRST®Tech Challenge

STRUCTURAL SUGGESTIONS

Ideas to extend your code from Teleop to Autonomous modes

/3

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY EIBRST
EW-2015

A(} Kettering FTC Workshop

FTC :
Hierarch \

* Object Oriented Programming’s Greatest
asset is reusability and extensibility.

* Better to define a robot by its actions, then
control it through those actions.

(o] {-]
4 J \
Teleop Auto
Mode Test Modes
Zone

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

/3%

A() Kettering FTC Workshop

FTC -
w== Key ldeas on Inheritance

* |Inheritance Properties:

— Extending a base class forces the base class to exist,
giving us those methods as well

* Think drive systems, arms, sensors, or timers required
* But know about Private, Public, and Protected

— We only need to override the operation modes we
want.

— For instance, leave initialization for the base class, only
work with loop() in the actual OpModes.

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FTC
Important Keys to Note:
Methods with inheritance
Overriding (Virtual Methods)

OpModes

Encapsulation

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY

/3%

FIRST
EW - 2015

A(} Kettering FTC Workshop
FTC

FIRST®Tech Challenge

NOW AN OPEN DISCUSSION.

Questions and Suggestions?
What would you like to see

£3)

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY EIBST
EW -2015

A() Kettering FTC Workshop
FTC

FIRST®Tech Challenge

AUTONOMOUS MODE

A method to accomplish tasks in Autonomous mode

/3

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY EIRST
EW-2015

A() Kettering FTC Workshop

FTC '
State Machines

* For this style of programming, State Machines are
the suggested method.

e Review of State Machines:

— Idea of states: Set of instructions unique to a phase of
a program

— States define what the robot is to do
— Redefine outputs
— Read inputs to trigger next state

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A(} Kettering FTC Workshop

FTC '
State Machines

 Requirements of a state machine:
— A state variable (usually an enumeration)
— A state selector (always a case-switch operator)
— State triggers (sensors or timers)
— An initial state

Drive Check
Forward Encoders

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FTC .
Enumerations:

 Enumerations are unigue names with values
defined behind them

* Common examples include compass directions
(values of NORTH, SOUTH, EAST, and WEST)

* Place above the actual OpMode

enum State |
INITTALIZE, MOVE, CHECK, STOP

| [3)
FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW -2015

/3y

FTC

FIRST®Tech Challenge

Kettering FTC Workshop

Switch and Case Structure:

operations
* Selector can take Enumeration’s, Integer’s commonly

gwitch (state s} |

case /INITTALIZE:
. state s = State.MOVE;
Switch Structure — Refers to all =]
regetTime () ;
cases break;

is entered

Case — Different states, as selected

case MOVE:

break;
case CHECK:

Selector — Selects whatever value this.DriveRobotTank(1.0£, 1.0f):
/ state_s = State.CHECK:

by the selector

if (this.getTime() > 1000) state s = State.STOF;

Break- Escapes out of structure case STOP:

this.StopDrive ()

Default- If no valid case exists, break;
default will always be used > default:

state_s = State.STOP;

* Allows for multiple cases or states to make different

break; M
1

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY

FIRST
EW - 2015

A() Kettering FTC Workshop

FTC .
FIRST*Tech Challenge Tr I g g e rS :

* Usually done by an if statement

— If statements are like case’s, but can easier to define
with logical statements

e Causes a change in our state variable

if (this.getIime() > 1000) =state s = State.ST0P;

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

Kettering FTC Workshop

FTC

FIRST®Tech Challenge

Putting it Together:
* We get the following OpMode:

package com.qualcomm.ftcrobotcontroller.opmodes; AOverride
public volid loop() |
P LIS ¥ switch (state s)|
case INITTALIZE:
enum 3tate | state = = State.MOVE;
INITIALIZE, MOVE, CHECE, STOP resetTime () ;
1 break;
case MOVE:

this.DriveRocbotTank({1l.0£, 1.0f);
public class Tutcrialfuton extends TutorialBot | state s = State.CHECK:

State state =; break:
E0werride if (this.getTime() > 1000} state s = State.STOF;
public woid start({) | break;

state s = State.INITIALIZE: case STOP:
| — this.StopDrive();

break;

(defanlt:

state s = State.S5TOP;
break;

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop

FINAL REMARKS &
QUESTIONS

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

A() Kettering FTC Workshop
FTC

FIRST®Tech Challenge

Thank You

Now get out their and program!

/3%

FOR INSPIRATION AND RECOGNITION OF SCIENCE AND TECHNOLOGY FIRST
EW-2015

