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1. Introduction 
Recent advances in computer technology and software have resulted in a shift from paper-based 
medical record to electronic medical record systems. Although electronic databases have been used in 
medical research for analysis of data for years, computerized information systems rarely have been 
used for collection of data during actual patient-physician interactions. The essential parts on this data 
are the medical images. Management of medical images has become a major issue for the development 
of healthcare in the last decades. Several medical devices produce medical images, such as: X-ray, X-
ray computed tomography (CT), magnetic resonance (MR), magnetic resonance spectroscopy (MRS), 
single photon emission computer tomography (SPECT), positron emission tomography (PET), 
ultrasound, electrical source (ESI), electrical impedance tomography (EIT), magnetic source (MS) and 
magnetic optical images. Medical systems suppose to have tools to analyze multidimensional and 
multimodal medical images in order to improve diagnosis and therapy, especially when therapy is 
guided by medical images (video-surgery, interventional radiology, radiotherapy, etc.). 

 

The main sources in the medical multimedia systems are images with associated text and possibly 
speech. Special algorithms are applied to “understand” the data content and retrieve the required 
information. The system's queries are based on a description of the subject or by examples. The 
databases are structured in a modular fashion, in such a way it allows people with different knowledge 
to access the information in a format which can be easily understood. Medical systems contain 
techniques for shape-based object recognition, algorithms for speech recognition, and a suitable user 
interface to access the multimedia information. Such systems are composed of several modules, 
devoted to the semantic processing of images and speech. The main functions for such systems are: 
extraction of quantitative parameters useful for diagnosis (shape, texture, motion); spatial registration 
of images acquired at different times; fusion of multimodal images; analysis of deformable motion; 
construction and use of digital anatomical atlases; functional brain analysis; building virtual patients 
and simulation of surgery; spatial localization of patients and surgical tools.  

 

Multimodal images of the same person or of different persons generally differ by local geometric 
differences, and to map such images into one coordinate system elastic transformations are required. 
Fused image data can improve medical diagnosis, surgery planning and simulation as well as 
intraoperative navigation. It enables to integrate different images into one representation such that the 
complementary information can be accessed more easily and accurately.  
 
In this chapter we discuss mainly the problems witch arise working with MR image. As an illustration 
of medical image processing tools we discuss MR brain segmentation problems. Functional analysis of 
different medical systems is made. We emphasize on the fact that working with medical images is 
different from working with other kind of images.  As an illustration two systems are presented. The 
first system is MEDIMAGE, which is a multimedia database for Alzheimer’s disease patients. It 
contains MR images, text and voice data and it is used to find some correlations of brain atrophy in 
Alzheimer’s patients with different demographic factors.  The second system is Epilepsy system, which 
includes image data from MRI and SPECT, scans and EEG analysis results and it is used for patients 
with epilepsy. 
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2. Review of Medical Multimodality and 
Multimedia Systems 

Medical multimedia and multimodality databases supports multimedia and multimodality data types, 
handle very large number of multimedia objects, high-performance, high-capacity, cost-effective 
storage and information retrieval capabilities. It includes features for acquisition, review, 
interpretation, management and communication of multimodality images, expandable and open system 
architecture, database management, friendly user-interface. They are continuation of the development 
of image database systems [19, 21, 34].  

In the medical multimodality and multimedia systems the main effort is put on advances in technology 
that have increased the capability to produce images, to manipulate them and improve the medical 
diagnosis. There are mainly two general methods for image comparison: intensity-based (colour and 
texture) and geometry-based (shape). A recently held user survey shows that users are often more 
interested in retrieval by object shape than by colour and texture. However, retrieval by shape is still 
considered one of the most difficult aspects of content-based search. Indeed, systems such as IBM's 
QBIC, Query By Image Content (http://wwwqbic.almaden.ibm.com), perhaps one of the most 
advanced systems to date, is successful in retrieving by colour and texture, but not too much by shape. 
A similar behaviour shows Alta Vista photo finder (http://image.altavista.com/cgi-bin/avncgi). The 
departing point in the medical multimodality and multimedia systems is the shape similarity measure 
based on the correspondence of visual parts. While much work has already been done in the direction 
of matching point sets, two curves, or two regions, little attention so far has been paid to developing 
methods for matching a collection of curves and regions against another collection, which is essential 
for the medical images. 

There are several specific requirements for medical images such as: (a) What kind of images to be 
acquired? (b) How the interested characteristics to be obtained? As an illustration how such problems 
are solved we will give our understanding of the problems dealing with the segmentation and volume 
calculation of grey matter (GM), white matter (WM) and Cerebrospinal Fluid (CSF) in the whole brain 
and regions of interest using MR images. 

In this chapter we will limit our analysis on only two important issues: (a) Content-based medical 
image retrieval techniques, and (b) Information extraction from the medical images and more 
specifically brain image segmentation methods. We will also present some valuable systems in these 
areas. 

2.1 Content-based medical image retrieval techniques 

The specific aim in this field is to develop a query languages and indexing methods for retrieval, based 
on the contents of the multimedia objects such as images. The traditional text-based image retrieval 
approaches have the following specifications: 

• Using text-based query languages such as SQL, and retrieving partially matched results with 
similarity ranking; 

• Handling abstract concepts and high-level objects; 

• Having difficulties to describe visual features like color, texture, and irregular shapes; 

• Limiting the scope of the search to a predetermined domain provided by the system’s author; 
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• Indexing due to the limited speed of entering the description text manually. 

 

Recently developed content-based approaches have the following features, which are also applied for 
medical images: 

• Using color, texture, shape, and an extendable set of descriptors such as Fourier descriptor 
and moment invariant. Therefore, they are capable to query based on visual characteristics of 
the data e.g., irregular shapes and texture features; 

• Indexing procedure is relatively fast compared to the text-based method; 

• Queries and retrievals are directly based on the visual objective properties of the data, so that 
they are reproducible procedures. 

 

The most of the existing content-based image retrieval methods are directly based on the visual 
features of the images like color and texture. These methods use a similarity measure after feature 
extraction for classification indexing. 

2.2 Brain image segmentation techniques 

A large number of researches have been done in image segmentation particularly in medical image 
segmentation. One possible way to categorize the image segmentation methods is on the properties 
being used to perform the segmentation. The image properties may divide into three major categories: 
(a) Intensity-based segmentation; (b) Texture-based segmentation; (c) Model-based methods. However 
other classifications can be found in [13] that provides an excellent review and bibliography for the 
MRI image segmentation. We will introduce examples for each category in the following subsections. 

2.2.1 Intensity-based segmentation methods 
In most techniques for segmentation the user identifies the anatomy of interest by sampling points, 
drawing region of interest or the segmentation is done automatically. Depending on the purpose for 
which the images are processed different techniques for segmentation are useful. These segmentation 
methods can be divided into two main classes: (a) unifeature segmentation and (b) bifeature 
segmentation. 

In unifeature segmentation only one image from the series is used for the segmentation process. It can 
be applied when no shading artefacts are presented in the image. The simplest case is the grey level 
thresholding. It is usually applied in CT data to model bones, because there is excellent contrast 
between the bone and the soft tissue in the CT images. However this technique does not work well in 
MR image segmentation where different tissue intensity ranges overlap. More powerful threshold is 
the connectivity utilization [14]. Surface voxels can be connected across faces, edges and corners. The 
connection between threshold voxels across faces can be used to extract region of interest. Bridges 
between objects can occur which makes the connectivity method difficult to apply. Bridges can be 
opened by filtering using the erosion operation from the mathematical morphology. 
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In the bifeature segmentation two echo images are used (usually the first is spin density and the second 
is T2-Weithed image). A scatter plot is constructed by plotting the points from each of the images 
against each other points from each tissue category to form a cluster. The scatter plot is partitioned into 
areas of each tissue category to construct a feature map used for the entire image segmentation. A 
simple method for constructing the feature map is labelling areas with the same tissue category as the 
nearest training point of the scatter plot. Probability methods fit each training cluster to a distribution 
function and construct a feature map by calculating the most probable tissue at each point of the two 
intensities. 

Bengtsson [5] introduces MUSE, interactive software for extending the thresholding concept to 
multivariate images, i.e. images with more than one spectral band. Similarly [1] uses a 3D spectrum of 
the tissue voxels for automatic segmentation of GM, WM, and CSF. It uses the segmentation results 
for volume calculations. Also [35] presents a multispectral analysis of MRI as a tool to recognize 
common normal tissue types within the brain. Some researchers use clustering methods on the image 
intensities to perform unsupervised segmentation. For instance Vinitski [38] uses a k-Nearest 
neighborhood algorithm for brain MRI segmentation. Gesu [17] propose several automatic clustering 
methods including hierarchical ISODATA (HISO) to segment the brain MRI slices. Vaidyanathan [37] 
compares a supervised k-nearest neighbor and a semi-supervised fuzzy c-means method with two 
reference methods, seed growing and manual segmentation. Hall [22] compares the results of a fuzzy 
c-means unsupervised clustering algorithm with a supervised dynamic multilayered perception trained 
using the cascade correlation-learning algorithm. Supervised and unsupervised segmentation 
techniques provide broadly similar results in this research article. Bensaid [6] investigates the problems 
associate with the clustering methods for segmentation as a classification problem. Since the imaging 
procedure is affected by noise, statistical methods are widely used to deal with the noise effects and to 
improve the segmentation results. Smith [29] proposes a Bayesian method that assumes there is an 
unobserved label for each pixel. The label generates the intensity value of each pixel. In  [10] a 
Bayesian approach for volumetric MRI segmentation is proposed with connectivity and smoothness 
constraints imposed. Wells [39] describes a method called adaptive segmentation that uses knowledge 
of tissue intensity properties and intensity inhomogeneities to correct and segment MR images. This 
method uses the expectation-maximization algorithm to get more accurate segmentation and better 
visualization. 

2.2.2 Texture-based segmentation methods 
 

The research done by Soltanian-Zadeh et al. [30] indicates that texture information may help to 
distinguish between different brain tumors and normal and abnormal tissues. Since they have used 
texture features along with intensity information it is not clear how well only texture features can be 
used for segmentation. Using texture information on MRI, Barra [4] calculate features to detect and 
characterize Alzheimer disease. This work characterizes the Alzheimer disease based on the whole 
brain dataset. The author uses the intensity information to perform brain segmentation. The author 
employs a fuzzy approach to model the MRI uncertainty and imprecision, and wavelet representations 
to incorporate the spatial and textural information. The author segments the brain to WM, GM, and 
CSF providing a fast, unsupervised and totally independent of any statistical assumption. Hofmann 
[23] presents an optimization framework for unsupervised texture segmentation using Gabor filters. 
Teuner [36] and Dunn [16] use multichannel Gabor decomposition for unsupervised segmentation and 
boundary detection. Chen [11] describes an automatic unsupervised texture segmentation schema, 
using hidden Markov models. Choi [12] employs a multivariate linear discriminant algorithm. He 
computes the classical Haralick and Pressman features within a 3×3×3 neighborhood. Then he adds the 
color information to perform the final segmentation. There is doubt for us if the texture features 
significantly represent the brain tissues since the methods mentioned here use texture features along 
with the intensity information. 
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2.2.3 Model-based segmentation methods 
 

Atlas warping and knowledge-based approaches have pre-defined assumptions about the brain 
structures. Atlas-based methods have certain elements of a 3D brain template to fit the corresponding 
elements of the patient’s brain. A warping function usually governs the dynamics under which the 
template from the brain atlas is fitting on the patients’ brain. The more landmarks and the higher 
degree of freedom the warping function supports, the better matching occurs between two datasets, i.e. 
brain atlas and patient’s brain. Knowledge-based methods have also pre-assumptions regarding the 
relative spatial relationships between brain structures. They usually utilize search methods restricted by 
anatomical knowledge and materialized in a rule-based system to find and segment the brain structures. 

 

Brown [9] introduces a knowledge-based approach for chest CT image segmentation. Lundervold [26] 
aims to segment brain parenchyma and CSF in MR images. The algorithm simultaneously incorporates 
information about anatomical boundaries (shape) and tissue signature (gray scale) using a priori 
knowledge. Ashton [2] proposes a technique making use of combination of gray scale and edge-
detection algorithms and some a priori knowledge to provide an unsupervised segmentation for 
hippocampus structure. Yan [40] presents a method that models each tissue type by Markov random 
field in a 3D lattice. The proposed method is an adaptive K-means clustering algorithm for 3D and 
multi-valued images. Atkins [3] proposed a robust fully automatic method for brain segmentation from 
skull and eyes on human brain MRI. The method uses anisotropic filters and snakes (deformable 2D) 
contouring techniques and a priori knowledge. He uses a priori knowledge to remove the eyes. Siadat 
[28], Soltanian-Zadeh [31], and Ghanei [18] propose a knowledge-based 3D deformable model for 
hippocampus segmentation.  

 

2.2.4 Problems in MR image segmentation and measurements in MR images 

We classify some of the problems derived with segmentation and measurements in MR images into 
three categories: (a) image acquisition problems; (b) segmentation problems; (c) measurements 
problems. 

2.2.4.1 MR image acquisition problems 

• What kind of image to be used for the segmentation? Usually spin density and T2-Weithed 
images are used. Except for T2-Wethed, T1-Weithed images can also be used. In our opinion 
the implementation of the three series will give better results. The problem is in the acquiring 
of such series of data and the constructing of a three-feature map. 

• Acquiring MR images with low signal to noise ratio. The signal to noise ratio is one of the 
most important quality criteria in an image quality. For MR images it depends on the number 
of protons per pixel. The ratio improves in thicker slices; it degrades in images with larger 
matrix and it is linearly proportional to the field strength and is a factor of square root of the 
number of averaging. We establish that images obtained with a field strength of 1.5 Tesla, 
number of averaging equal to 1 and image matrix 256 x 256 are good for segmentation. Using 
different protocols we found that the signal to noise ratios vary between 83.05 (± 3.01) to 
86.79 (±0.81) in a phantom MR images. 
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• Choosing the thickness of the image slices. The thinnest possible slices should be obtained, 
because this reduces the partial volume averaging artefacts. According to Kohn [25] there is 
no statistically significant difference between volume calculation results obtained from 3 mm 
tick slices and those obtained from 5 mm slices. We found that axial spin density and T2-
Weithed images as 5 mm slices with 2.5 mm gap are good for segmentation and coronal 
images as 1.3 mm slices are good for measurement of different brain structures. 

• Choosing the image acquiring parameters. The MR images has to be obtained with good 
contrast and quality. We found that sagittal images with TE = 19 ms, TR = 650 ms, axial 
images with TE1= 30 ms, TE2 = 80 ms, TR = 2400 ms and coronal images with TE = 5 ms, 
TR = 23 ms and flip angle = 35 degrees are good for segmentation and structure 
measurements. 

• Making symmetrical images. This is important for volume calculation, if we want to compare 
the volume of some structure in the left and right part of the brain. To obtain this goal a series 
of sagittal images has to be obtained first and used for orientation. 

2.2.4.2 MR image segmentation problems 

• Choosing between sagittal, axial and coronal images for a particular calculation. According to 
Kohn [25] there is statistically no difference what kind of images are selected. Ideally, the 
plane containing the greatest structural complexity should be parallel to imaging plane. 
However the coronal plane is preferable because there is less section-to-section contour 
variation compared with such variation in the sagittal and axial planes. We found that sagittal 
images are good for orientation, axial making parallel to AC-PC line for volume calculation 
of the WM, GM and CSF, and coronal images making perpendicular to hippocampal 
formation for hippocampal volume calculation. 

• How to compare the segmentation made by different observers? Some structures overlap and 
anatomic knowledge between the observers can be different. So our solution is that the 
observers has to use the standard stereotactic atlas [33] when they select points or draw lines, 
or select region of interests. The problem here is that the thickness of the slices and the gap 
between them varies from slice to slice in this atlas. In our studies we obtain 0.97 as 
interoperator correlation and 0.98 as intraoperator correlation. 

2.2.4.3 MR images measurement problems 

• How many images from the series to be used to calculate the volume of the different 
structures of the brain? We have found that the very first and last images are usually not good 
enough for the purpose of the segmentation process. We use as a first slice the slice in which 
the cerebellar hemisphere appears and the last slice, where the top of the brain can be seen for 
image segmentation. 

• How to remove from the images structures that are not of interest? Such structures are usually 
eyes, mussels, fatty tissue of scalp in brain MR images. Because such structures are usually 
segmented as CSF we found that they have to be removed from the images if we used them 
for segmentation. Possible ways are manually or using morphological filters. 

• How to calculate the volume of the boundary voxels? Algorithms which approximated the 
boundary voxels has to be used. They taken into account the surface shape and interpreting 
the tissue regions as polygons. 
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• How to calculate the normalized tissue volume. The user needs such data if he wants to 
compare the amount of the brain tissue volume of different patients. Different people have 
different volume of the brain. One way to normalize the volume of brain tissues is by using 
the whole grain volume. Another way which we chose is to normalize the volume by using 
AC-PC distance, given in the standard stereotactic atlas [33]. 

2.3 Medical systems working with multimedia and multimodality 
information  

A list of valuable multimedia and multimodality medical systems includes: 

• QUICKSEE - a system for endoscopic exploration inside 3D radiological images and text 
[http://cobb.ece.psu.edu/krishnan/krish_home.html];  

• The database of the anatomic MRI brain scans of children across a wide range of ages to serve 
as a resource for the pediatric neuroimaging research community [27]; 

• BrighamRAD teaching case database department of radiology, Brigham and Women's 
Hospital Harvard Medical School [8]; 

• BrainWeb Simulated Brain Database site of a normal brain and a brain affected by multiple 
sclerosis [15]. [http://golgi.harvard.edu/biopages/medicine.html]; 

• MedPix™ [http://rad.usuhs.mil/synapse/radpix.html] is a fully web-enabled and cross-
platform database, integrating images and textual information. The primary "target audience" 
includes physicians, medical students, graduate nursing students and other post-graduate 
trainees. The material is organized by disease category, disease location (organ system), 
captions, and by patient profiles. MedPix™ can be searched through multiple internal image 
and text search engines; 

• A Medical Image Database System for Tomographic Images is described in 
[http://www.ics.forth.gr/ICS/acti/cmi_hta/publications/papers/1988-1994/car89/car89.html]. 
The attention has been focused on techniques for the automated description of anatomical 
crossections in terms of geometrical features which facilitate matching operations and can be 
used to access tomographic images by content. The organization of the image database and 
possible strategies for image retrieval by content are available; 

• MediMedia [http://www.infowin.org/ACTS/NEWS/CONTENT_UK/981101uk.htm] provides 
an extensive database of medical case histories and surgical procedures. An example of the 
application of the MediMedia database is in pre-operative planning for the execution of 
medical interventions, such as hip surgery. X-ray images and CT scans taken prior to the 
operation are processed by the system to make 3D computerized models of the patient's 
bones.  
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3. The MEDIMAGE System   
We determined topographic selectivity and diagnostic utility of brain atrophy in probable Alzheimer's 
disease (AD) and correlations with demographic factors such as age, sex, and education. A medical 
multimedia database management system MEDIMAGE was developed for supporting this work. Its 
architecture is based on the image database models [20], [32]. The system design is motivated by the 
major need to manage and access multimedia information on the analysis of the brain data. The 
database links MR images to patient data in a way that permits the use to view and query medical 
information using alphanumeric, and feature-based predicates. The visualization permits the user to 
view or annotate the query results in various ways. These results support the wide variety of data types 
and presentation methods required by neuroradiologists. The database gives us the possibility for data 
mining and defining interesting findings. 

 

The MEDIMAGE system architecture is presented in the Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The MEDIMAGE system architecture 

3.1 The MEDIMAGE system databases 

In the MEDIMAGE system there are four databases: 

a) MEDIMAGE MR Database. For brain volume calculation we store a two-spin-echo sequence 
covering the whole brain. 58 T2-Weithed 3 mm slices are obtained with half-Fourier 
sampling, 192 phase-encoding steps, TR/TE of 3000/30, 80 ms, and a field-of-view of 20 cm. 
The slices are contiguous and interleaved. We collect and store also 124 T1-Weighted images 
using TR/TE of 35/5 msec, flip angle of 35 degrees. Finally we collect patients and scanner 
information such as: acquisition date, image identification number and name, image modality 
device parameters, image magnification, etc. 

  
MEDIMAGE    MR Image Segmentation tools 
MR Image Processing   MR 3D reconstruction tools 
Tools     MR Measurement tools 

 
 
 
MEDIMAGE    MEDIMAGE Definition Tools  
Database     MEDIMAGE Storage Tools 
Management     MEDIMAGE Manipulation Tools 
System Tools    MEDIMAGE Viewing Tools   

 
 
MEDIMAGE Databases catalogs   MEDIMAGE Databases  
 
1. MR database catalog    1. MR database  
2. Segmented and 3D          2. Segmented and 3D  

remonstrated database catalog  remonstrated database 
3. Test database catalog   3. Test database 
4. Radiologist comments database catalog  4. Radiologist comments database 
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b) MEDIMAGE Segmented and 3D reconstructed database. This is the collection of process 
magnetic resonance images – segmented and 3D rendered. 

c) MEDIMAGE Test database. The test date includes patient’s results from the standard tests for 
Alzheimer’s disease and related disorders. 

d) MEDIMAGE Radiologist comments database. This data are in two types: text and voice. 
They contain the radiologist findings. 

3.2 The MEDIMAGE MR image processing tools 

In the MEDIMAGE system there are three main tools for image processing. 

 

a) MEDIMAGE MR Image Segmentation tools. These tools include bifeature segmentation 
tool and ventrical and sulcal CSF volume calculation tool. The CSF denotes the fluid inside 
the brain.  

• Bifeature segmentation tool. Segmentation of the MR images into GM, WM and 
CSF is performing in the following way: thirty points per compartment (15 per 
hemisphere) are sampled simultaneously from the proton density and T2-Weigted 
images. The sample index slice is the most inferior slice above the level of the orbits 
where the anterior horns of the lateral ventricles could be seen. Using a 
nonparametric statistic algorithm (k-nearest neighbors supervised classification) the 
sample points are used to derive a “classificator” that determined the most probable 
tissue type for each voxel.  

• Ventrical and sulcal CSF volume calculation tool. A train observer places a box 
encompassing the ventricles to define the ventrical CSF. Subtraction the ventical 
from the total CSF provided a separate estimate of the sulcal CSF. 

 

b) MEDIMAGE MR 3D reconstruction tools. These tools include total brain capacity 
measurement and region of interest definition tools.  

• Total brain capacity measurement tool. A 3D surface rendering technique is used to 
obtain accurate lobal demarcation. The T2-weighted images are first “edited” using 
intensity thresholds and tracing limit lines on each slice to remove nonbrain structures. 
The whole brain volume, which included brain stamp and cerebellum, is then calculated 
from the edit brain as an index of the total intracranial capacity and is used in the 
standardization procedures to correct for brain size. A 3D reconstruction is computed.  

• Region of interest definition tool. Using anatomical landmarks and a priori geometric 
rules accepted by neuroanatomic convention, the frontal, parietal, temporal, and occipital 
lob are demarcated manner. The vovels of the lobar region of interest is used to mask the 
segmented images, enabling quantification of different tissue compartments for each lobe. 

 

c) MEDIMAGE MR Measurement tools. These tools include Hippocampal volume 
determination tool.  

• Hippocampal volume determination tool. Sagical images are used to define the anterior 
and posterior and end points of the structure. Then they are reformatted into coronal 
slices perpendicular to the longitudinal axis of the hippocampal formation. Then the 
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hippocampal perimeter is traced for each hemisphere. The demarcated area is multiplied 
by slice thickness to obtain the hippocampal volume in the slice. 

3.3 The MEDIMAGE database management tools 

In the MEDIMAGE database management system there are definition, storage, manipulation and 
viewing tools.  

a) MEDIMAGE Definition Tools.  Those tools are used for defining the structure of the four 
databases. All of them are using relational model. 

b) MEDIMAGE Storage Tools. These are tools allowing entering, deletion and updating of the 
data in the system. 

 
c) MEDIMAGE Manipulation Tools. Those tools allow: image retrieval based on 

alphanumeric and feature-based predicates and numerical, text, voice and statistic data 
retrieval.   

 
• Image retrieval based on similarity retrieval.  Let a query be converted in an image 

description Q(q1, q2, …, qn) and an image in the image database has the description 
I(x1, x2, …, xn).  Then the retrieval value (RV) between Q and I is defined as: RVQ(I) 
= Σi = 1, …,n (wi * sim(qi, xi)), where wi (i = 1,2, …, n) is the weight specifying the 
importance of the ith parameter in the image description and sim(qi, xi) is the 
similarity between the ith parameter of the query image and database image and is 
calculated in different way according to the qi, xi values. There are alphanumeric and 
feature-based predicates.   

 
• Numerical, text, voice and statistic data retrieval.  A lot statistical function are 

available in the system allowing to make data mining using the obtain measurements 
and correlated them with different demographic factors. 

 
d) MEDIMAGE Viewing Tools. Those tools allow viewing images and text, numerical and 

voice data from the four databases supported by the system. 
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3.4 Results obtained with the MEDIMAGE system  

The results of some of the image processing tools are given in Figures 2-7. Result from the statistical 
analysis applied to MR images in 32 patients with probable AD and 20 age- and sex-matched normal 
control subjects find the following findings. Group differences emerged in grey and white matter 
compartments particularly in parietal and temporal lobes. Logistic regression demonstrated that larger 
parietal and temporal ventricular CSF compartments and smaller temporal grey matter predicted AD 
group membership with an area under the receiver operating characteristic curve of 0.92. On multiple 
regression analysis using age, sex, education, duration, and severity of cognitive decline to predict 
regional atrophy in the AD subjects, sex consistently entered the model for the frontal, temporal, and 
parietal ventricular compartments. In the parietal region, for example, sex accounted for 27% of the 
variance in the parietal CSF compartment and years of education accounted for an additional 15%, 
with women showing less ventricular enlargement and individuals with more years of education 
showing more ventricular enlargement in this region. Topographic selectivity of atrophic changes can 
be detected using quantitative volumetry and can differentiate AD from normal aging. Quantification 
of tissue volumes in vulnerable regions offers the potential for monitoring longitudinal change in 
response to treatment.  

        =>    

Figure 2.  Bifeature segmentation 

 =>  

Figure 3. Ventricular and Sulcal CSF Separation 

 =>   

Figure 4. Brain Editing 

 

TE = 30 ms TE = 80 ms 
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   =>  

Figure 5. 3D Brain Reconstruction 

 

 =>   

Figure 6. Region Definition 

    =>   

Figure 7. Hippocampal Volume Calculation 

3.5 The MEDIMAGE system summary 

The MEDIMAGE system was developed in the Sunnybrook health science centre, Toronto, Canada, 
on SUN Microsystems. It uses GE scanner software and ANALYSE and SCILIMAGE packages. The 
medical findings are described in details in [24]. The main advantages of the proposed MEDIMAGE 
system are: (a) generality.  The system could easily modify for other medical image collection. The 
system was use also for corpus colosam calculations [7]; (b) practical applicability.  The results 
obtained with the system define essential medical findings.  
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4. The Epilepsy System 
 

The Epilepsy system data includes MRI and SPECT scans and EEG analysis data. A new segmentation 
method is utilized for information extraction and indexing. The proposed system is capable of content-
based image retrieval. Finding the correlations between symptoms, treatment planning, and outcomes 
of the neurosurgery within a largely populated database helps neurosurgeons to determine surgery 
candidacies. 

4.1 The Epilepsy system architecture 

The system architecture is shown in Figure 8. The “Segmentation Module” generates a 3D model for 
the desired structure within the brain from the specified image modality. The structure model then will 
be stored in the database along with the parameters used to build the model via “Query Module.” The 
“Query Module” acts like a mediator. According to the query it decides from which modality the 
information should be retrieved and which wrapper-parameters should be employed. Further, it 
activates the applications such as histogram analysis modules to determine the parameters for 
localization procedure. The histogram analysis module is within the “localization procedure parameter 
settings” and it determines the thresholds for generating the binary images. The parameters for “3D 
deformable model” is pretty much fixed for each desired structure. So depending on the desired 
structure “Query Module” retrieves the proper parameters from the database. The wrapper for visual 
feature extraction is a batch file that calculates the visual features within the specified structure model. 
The features should be calculated over a proper image modality. The decision about which structure 
and which image modality should be used is made by “Query Module” and according to the query 
issued by user. The wrapper includes registration module to align the specified image modality with 
the modality on which the structure model has been generated. For the EEG signal, the wrapper (a non-
visual feature extractor) can be either a 1D signal processing algorithm or an expert/specialist. We 
decided to have the experts to do the job since it is a routine in our clinics (at Henry Ford Hospital) and 
it is done according to a well-defined standard. For unstructured text information, the wrapper is either 
a trained nurse (data analyst) or natural language analyzer software. In our case, we decided to have a 
trained nurse to extract the information. The output of feature extraction for unstructured non-visual 
data fills out our predefined tables resulting in “loose of information” and “subjectivity” of the 
proposed database. The structured data does not need to be analyzed by the wrapper and can be 
directly stored in the database via database applications. System author is either an individual 
surgeon/neuroscientist or a group of them and the users are they themselves or their students or 
patients. 
 
The queries that will be issued are like: 
 

• What is the correlation between the ratios of hippocampi volumes before the surgery vs. 
temporal lobe epilepsy as the signature of the disease? The possible retrieved information may 
look like Fig. 3-4. 

 
• What is the correlation between the ratios of hippocampus resection over its volume before 

the surgery vs. memory quotient? 
 
• What is the correlation between attribute_X of the entity_Y and the patient memory quotient? 

Where entity_Y is a brain structure such as hippocampus and attribute_X is any feature of the 
structure. 
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• What is the average of R_V (minus) L_V (L_V and R_V stand for the volumes of the left and 

right hippocampi, respectively)? 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The Epilepsy system architecture 
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4.2 The Epilepsy system methods 

Image segmentation methods consist of a new knowledge-based segmentation method and a database 
with an extendable schema. We use a set of 33 rules to localize the hippocampus in T1-Weighted MRI. 
Hippocampus is an important brain structure for epilepsy diagnosis with no/low contrast boundaries 
and multiple edges in some parts. A 3D deformable model evolves the initial localization of the 
hippocampus to fit its exact surfaces. After segmentation, different image modalities are registered 
onto the segmented one. The volume, surface area, and intensity mean-value and standard deviation are 
calculated based on the hippocampus model. Other features are the calculated over the model and 
added to the database as new attributes of the hippocampus. The schema proposed for the database is 
extendable i.e. new attributes, entities, and relationships, can be added as they become available. The 
content of the dataset within the segmented model such as signature vector, texture, and shape is 
queried resulting in the content based image retrieval capability. 

4.3 Results obtaining with the Epilepsy system  

We have segmented the hippocampus structure from 24 patients’ T1-Weighted MRIs and calculated its 
attributes (volume, surface area, intensity mean-value and standard deviation) within the segmented 
model. The query “What is the average of R_V (minus) L_V (L_V and R_V stands for the volumes of 
the left and right hippocampi) for patients with left-side operation before the surgery?” resulted 275.7 
pixels for 10 patients with left side operation. In Figure 9 the initial localization of the hippocampus by 
the knowledge-based method proposed in [28] and [31] is shown. The left column contains the coronal 
MRI scans; the right column the zoomed in view of a sagittal slice with a polygon drawn around the 
hippocampus; and in the center column - zoomed in view of the left column taken from the slices 
perpendicular to the dash-lines shown on the right column. In Figure 10 the final results of the 
hippocampus segmentation using the initial polygon shown in Figure 9, performed by 3D deformable 
model [18] is shown. In the left column the coronal MRI scans are given; in the right column the 
zoomed in view of a sagittal slice with the accurate segmentation of the hippocampus; and in the center 
column the zoomed in view of the left column taken from the slices perpendicular to the dash-lines 
shown on the right column.  
 
Furthermore, other brain structures such as parahippocampal gyrus are also segmented and added to 
the database as new entities along with their attributes. 
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Figure 9. The initial localization of the hippocampus by the knowledge-based method 
  

   
 

   
 

   
Figure 10. The final results of the hippocampus segmentation 
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5. Conclusions 
The advances in medical imaging over the last two decades have a compact effect on diagnosis, 
treatment planning and evaluation. Despites of the available medical multimedia and multimodality 
systems a lot has to be done in the future using the multimedia technology. They have to cover: 

• A-click-away information available for the surgeon about the previously treated patients 
similar to the current case especially in terms of their visual characteristics; 

• Keep track and to provide conclusions about a group of patients undergone through a 
particular treatment plan over the past period of time; 

• To evaluate the disease and results of the treatment plan, and their quantitative effects on the 
normal/abnormal structures/tissues of the brain based on the scanned image data sets; 

• Having the previous case experiments/documents and providing easy access to the meaningful 
patient’s information. 

 

On the other hand, the patient’s medical image data form a huge source of information. The 
medical data for each individual patient should be augmented with the neurological knowledge 
and surgery experiences in the expert’s mind to perform diagnosis, treatment planning, treatment 
evaluation, and to discover correlations between symptoms, planning, treatments, and their 
outcomes. Considering the huge amount of the patient’s data, it is impossible for a human being to 
keep track of all parts of it specially its quantitative aspects.  We hope that the area of the 
multimedia and multimodality medical system is a very rapid growing area and we expect a lot of 
research in the very near future.  

 

The main conclusion of the use of our systems is that the content-based image retrieval is not the 
essential part in such kind of system. Data mining algorithms play essential roles in similar 
systems. 
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