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Abstract This paper studies the retinal vessel radius
estimation and proposes a segmentation method for
vessel center lines based on ridge descriptors. The study
on radius estimation reveals that the radius estimation
by the matched filters based on the second order deriv-
atives of Gaussian kernels is only correct at the vessel
center. The relation between the vessel radius and the
scale of the Gaussian kernel in the estimation method
based on the normalized largest curvature is also
studied. The ridge descriptor proposed in this paper
contains the normalized largest curvature and the
orientations of gradients in the local neighborhood.
For vessels of a certain scale, the distribution of the
descriptors is assumed to be a normal distribution and
is learned from a training set with known truth. Ves-
sel center line segmentation can be then performed
based on the distance between the ridge descriptor
at candidate pixels and the learned model. Evalua-
tion of the vessel center line segmentation based on
the descriptors is done on both DRIVE and STARE
databases using the receiver operating characteristic

C. Wu (B) · P. Stanchev
Department of Computer Science,
Kettering University, Flint, MI 48504, USA
e-mail: cwu@kettering.edu

P. Stanchev
e-mail: pstanche@kettering.edu

J. J. Kang Derwent
Department of Biomedical Engineering,
Illinois Institute of Technology,
10 West 32nd Street, Chicago,
IL 60616-3793, USA
e-mail: derwent@iit.edu

(ROC) curves. The areas under the ROC curves on
DRIVE and STARE databases are 0.9584 and 0.9421
respectively.
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1 Introduction

Retinal fundus assessment has been widely used by
the medical community for diagnosing vascular and
non-vascular pathology. Inspection of the retinal ves-
sels may reveal hypertension, diabetes, arteriosclero-
sis, cardiovascular disease and stroke [1]. Computer
assisted image analysis of the retinal images is highly
helpful in many cases. For example, the diagnosis
of diabetic retinopathy, the leading cause of blindness
in the West World, can be prevented with treatment
at an early stage. Because of this, the World Health
Organization recommends annual ocular screening,
which can be greatly facilitated with the adoption of
automatic tools [2].

One important task in the automated processing of
retinal images is the segmentation of blood vessels.
The vascular features such as radius, length, branching
angle, and tortuosity have diagnostic relevance and can
be used to monitor the progression of diseases [3]. For
example, the vessel radius can be used to calculate the
blood flow through the vessels. The change in blood
flow may indicate the narrowing or growth of vessels,
which is closely related to diabetes. However, accurate
vessel segmentation in retinal images is difficult due to
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several reasons: the presence of noise, the low contrast
between vessels and background, variation of vessel
radius, brightness, and shape. The presence of lesion,
exudates, and other pathological effects may create
large abnormal regions, which add to the difficulty of
vessel segmentation.

Previous methods for vessel segmentation in reti-
nal images can be generally divided into two groups
[4]. The first group consists of rule-based methods,
including vessel tracking [5–8], matched filter responses
[9–12], grouping of edge pixels [13], model-based lo-
cally adaptive threshold [14], model-fitting [15], topol-
ogy adaptive snakes [16], probabilistic filtering [17],
morphology-based techniques [3, 18, 19] and Hessian
eigenvalue-based multi-scale filters [20, 21]. The second
group consists of supervised methods, which requires
training on manually labeled images, such as the neural
network scheme for pixel classification [22] and the
ridge based segmentation approach by Staal [4].

The segmentation of vessels can be represented in
two ways. One way is to mark out all vessel pixels.
The other way is to find the vessel center lines and
the radius at each pixel of the center lines. In the
existing work, a couple of ways for estimating the vessel
radius have been proposed. The most obvious way is
to measure the distance between the parallel boundary
edges of a vessel. However, the accurate localization
of edges is not easy given the low contrast and noise.
Methods based on the intensity profile of the cross
section other than the edges have been proposed. In
Chaudhuri et al. [10], the vessel radius is estimated from
the standard deviation of the Gaussian kernel matched
to the vessel profile. In Frangi et al. [20] and Li [21], the
vessel radius is estimated from the deviation σ of the
smoothing Gaussian kernel that produces the largest
σ -normalized maximum second order derivative over
multiple scales. In Gang et al. [11], the second order
derivatives of multiple Gaussian kernels are used to
convolve with the image, and the vessel radius is esti-
mated from the deviation of the Gaussian kernel that
produces the maximum adjusted convolution response.
Much of the literature on vessel radius estimation only
discusses the relation between the vessel radius and
the deviations of Gaussian kernels at the vessel center,
while the relation between them at the points away
from the center line are not adequately examined.

This paper focuses on the vessel radius estimation
and the segmentation of the vessel center lines. The
paper examines the relation between the vessel radius
and the deviations of the Gaussian kernels in two pop-
ular vessel radius estimation methods, and proposes an
approach for segmenting the vessel center lines based
on ridge descriptors. This paper is organized as follows.

Section 2 discusses in detail the responses of two com-
monly used functions in the estimation of vessel radius
at pixels away from the vessel center lines and the
relation between the deviation of the Gaussian kernel
that produces the largest response and the vessel radius.
Section 3 proposes a novel descriptor for vessel center
lines. Section 5 presents an approach to segment the
vessel center lines based on the distributions of ridge
descriptors learned from a given training set. Section 6
discusses the experiment results and evaluates the per-
formance of the proposed method. Section 7 concludes
this paper and discusses the future work.

2 Responses of Two Commonly Used Vessel Radius
Estimate Approaches

In the estimation of vessel radius, response functions
based on multiple-scale convolution with the second
order Gaussian functions and the normalized curva-
tures are widely used. In this section, the response
functions of the two approaches are discussed in detail.
The purpose is to have a thorough understanding of
the responses not only at the vessel centers but also at
pixels away from the centers.

The two response functions to be discussed are all
based on the inverted green channel and the assump-
tion that the cross-section profile of a vessel in the
green channel is Gaussian after intensity inversion and
that the deviation of the Gaussian profile is assumed
to be equal to the vessel radius. Section 2.1 discusses
the response of the convolution with the second or-
der Gaussian derivative in the multiple-scale matched
filters [11, 12] and Section 2.2 discusses the response
of the normalized largest curvature commonly used in
the filters based on the eigenvalues of Hessian matrix
[20, 21].

2.1 Response of Convolution with the Second Order
Gaussian Derivative

In the multiple scale matched filters [11, 12], retinal
images are convoluted with an adjusted second-order
derivative of a Gaussian function:

f (x) = 1√
2πσ t

(
x2 − σ 2) e− x2

2σ2 (1)

where t is for adjusting the power of the deviation σ .
The convolution, in other words, the response at the
center of a vessel with radius equal to w is [11]:

h(t) =
∫ ∞

−∞
1√

2πσ t

(
x2 − δ2

)
e

−x2(w2+σ2)
2w2σ2 dx (2)
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The value of t affects the relation between σ and w. For
some values of t, the convolution hits maximum at a
particular scale and the relation between the σ of that
scale and the vessel radius can be determined. More
particularly, when t = 3.5, h(t) will hit maximum when
σ = w [11]. Therefore, we can have an estimate of the
radius of a vessel by convolving it with the adjusted
second order derivatives of Gaussian functions at mul-
tiple scales and looking for the scale that produces the
maximum response.

In the following part of this section, the relation
between σ and w is further explored at pixels away
from the center. Consider a point p whose distance
from the vessel center is α, if we use p as the origin,
the cross profile of a vessel can be described by a
shifted Gaussian signal (without loss of generality, the
amplitude is assumed to be 1):

g(x) = e− (x−α)2

2w2 (3)

The convolution of g(x) and f (x) becomes

F(x) = 1√
2πσ t

∫ ∞

−∞
e− (τ−α)2

2w2
(
(x − τ)2 − σ 2

)
e− (x−τ )2

2σ2 dτ (4)

The above equation shows the responses at all positions
in the cross section of a vessel. The response at p is
F(0):

F(0) = 1√
2πσ t

∫ ∞

−∞

(
τ 2 − σ 2

)
e−

(
(τ−α)2

2w2 + τ2

2σ2

)

dτ (5)

= e− α2(1−σ2)

2w2

σ t(σ 2 + w2)3/2

{−σ 5w + σ 5wα2
}

(6)

When considering the response at the center of a vessel,
α = 0, then

F(0)α=0 = −σ 5−tw

(σ 2 + w2)3/2
(7)

F(0)α=0 will have a peak. The σ̂ that produces the
maximum response is dependent on t. When t = 3.5, w

is equal to σ̂ and the response at p can be expressed by

F(0)t=3.5 = e− α2(1−σ2)
2w2

σ 1.5
(
α2 − 1

)

(σ 2 + w2)

√(
σ
w

)2 + 1
(8)

Unfortunately, F(0)t=3.5 does not have a maximum over
σ , which means that the radius estimation of vessels is
only accurate at the vessel centers. Figure 1 shows two

Figure 1 Sample rendering
of F(0)t=3.5. The first row is
the 3D rendering, where x
axis is the vessel radius w, the
y axis is σ and z axis is the
response F(0)t=3.5. a α is
equal to 0.5. b α is equal
to 2. The second row is 2D
drawing when particular α

and w are fixed. c α is 0.5
and w is 3. d α is 2 and w is 5.
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sample surfaces of F(0)t=3.5 when α is fixed and two
curves of F(0)t=3.5 when α and w are fixed.

The fact that only the response at the vessel center
has peak indicates a challenge in estimating the vessel
radius using the multiple-scale matched filters. The
error in detecting vessel center lines may lead to wrong
or inaccurate estimates.

2.2 Response of Normalized Maximum Principal
Curvature

The filters proposed in Frangi et al. [20] and Li [21]
use the eigenvalues of the Hessian matrix, which is the
second order derivative in the Taylor expansion:

I(x0 + δx0) = I(x0) + δxT
0 �0 +δxT

0 H0δx0 (9)

where δx0 is a small vector at x0, �0 is the gradient at
x0, and H0 is the Hessian matrix at x0. H0 is defined as

H0 =
[

Ixx(x0) Ixy(x0)

Iyx(x0) Iyy(x0)

]
(10)

The Hessian matrix H0 captures the second order pro-
file at x0 and its eigenvalues are actually the two prin-
cipal curvatures at x0 [20]. In the multiple scale filters
based on Hessian matrix, the response is generally
depending on the magnitude of the largest absolute
eigenvalue of the Hessian matrix. For example, let
|λ1| � |λ2| be the two normalized eigenvalues of the
Hessian matrix at scale s. The response proposed by
Li [21] for two dimensional vessels is simply defined as

ψs(x) =
{ |λ2| − |λ1| if λ2 < 0

0 otherwise
(11)

The reason for condition λ2 < 0 is that the second order
derivative of Gaussian function is negative between −σ

and +σ . The final response is the maximum of the
responses on multiple scales T :

Ψ (x) = max{ψs(x) | s ∈ T } (12)

At each scale, the Hessian matrix is computed after
smoothing the image with a Gaussian kernel. The scale
ŝ that produces the maxima indicates the vessel radius.
That is to say that there is a relation between the
vessel radius and the deviation σ̂ of the smoothing
Gaussian kernel used at scale ŝ. The normalization of
the eigenvalues is simply to multiply the eigenvalues
by σ 2.

The following part of this section will be dedicated to
the discussion of the relation between σ and the vessel

radius w at any given point of a vessel. As we know,
the convolution of two Gaussian signals produces a
new Gaussian signal. Therefore, if we assume the vessel
profile is Gaussian as shown in Eq. 3, then the vessel
profile after the convolution is

f (x) = 1
√

2π
(
w2 + σ 2

)e
− x2

2(w2+σ2) (13)

The curvature along the cross section of a vessel is the
second order derivative of f (x):

f ′′(x) = x2 − (
σ 2 + w2

)

√
2π

√
σ 2 + w25 e

− x2

2(σ2+w2) (14)

According to Linberg’s scale space theory [23], the
eigenvalue of the Hessian matrix is normalized by σ 2.
Then the output of the filters based on the Hessian-
eigenvalue is dependent on the following response R:

R(σ, x) = σ 2 f ′′(x) = σ 2
(
x2 − (

σ 2 + w2
))

√
2π

√
σ 2 + w25 e− x2

2(σ2+w2)

(15)

A interesting property of R is that for any value of x,
R has a maximum value over σ , which means there is
a particular σ̂ that produces the maximum response at
point x, see Fig. 2.

Figure 2 Sample rendering of R at a point 2 pixels away from the
vessel center. x axis shows the σ , y axis shows the vessel radius,
and z axis shows the value of R.
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Let σ 2 + w2 = t2, R(σ, x) can be rewritten as

R(t, x) =
(
t2 − w2

) (
x2 − t2

)

√
2π t5

e− x2

2t2 (16)

= 1√
2π

{(
x2 + w2

t3
− 1

t
− w2x2

t5

)
e− x2

2t2

}
(17)

The t that produces the maximal R(t, x) can be found at
the zero-crossing of the first order derivative:

d(R(t, x))

dt
= 0 (18)

Let A = (
x2 + w2

)
t−3 − t−1 − w2x2t−5, we have

d(R(t, x))

dt
= 1√

2π

(
A′

te
− x2

2t2 + Ax2t−3e− x2

2t2

)
(19)

Therefore, Eq. 18 is equivalent to

A′
t + Ax2t−3 = 0 (20)

and

A′
t = −3

(
x2 + w2

)
t−4 + t−2 + 5w2x2t−6 (21)

Plug A′
t and A into Eq. 20, and rearrange it, we get

the following equation:

t6 − (
4x2 + 3w2

)
t4 + (

6w2x2 + x4
)

t2 − x4w2 = 0 (22)

This is a cubic polynomial equation, whose solu-
tion is complicated and dependent on the value of
w and x. However, for any particular w and x,
the equation can be solved using Cardano’s method
(http://en.wikipedia.org/wiki/cubic_equation). The fol-
lowing two special cases have quite simple solutions.

– When x = 0, we have t6 − 3w2t4 = 0. The solution
is t = √

3w. Since t2 = σ 2 + w2, we have σ = √
2w,

which means at the vessel center lines, the scale that
uses a Gaussian kernel of deviation equal to

√
2w

produces the largest response.
– When x = w, we have t6 − 7w2t4 + 7w4t2 − w6 =

0. This equation has three roots, but only one
root has practical meaning. The valid root is
t =

√
3 + 2

√
2w. Therefore, the deviation of the

Gaussian kernel that produces the largest response
is

√
2 + 2

√
2w.

According to Cardano’s method (http://en.wikipedia.
org/wiki/cubic_equation), the solution for t2 at points
between the boundary and the center should be a poly-
nomial function of x and w. For a particular vessel, w is
a fixed, therefore solution for t2 is a polynomial function
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Figure 3 The ratio between the σ that produces the maximum
response and the vessel radius w at points whose distances from
the center are 0, 1, 2, 3, 4 and 5 pixels. The vessel radius is
5 pixels. The curve in this figure suggests that ratio is monotoni-
cally increasing.

of x only. Figure 3 shows the ratio σ/w at different
values of x when w is equal to 5. It suggests that σ/w

is monotonically increasing with respect to x. If so, then
the σ that produces the maximum response at any point
between the center and the boundary is in the range
(
√

2w
√

2 + 2
√

2w).

3 Ridge Descriptors

In this section, a new vessel segmentation approach
based on scale-space ridge descriptors is proposed.
Ridges are defined as points where an image has an
extremum in the direction of the largest surface cur-
vature. In retinal images on which experiments of this
paper are conducted on, the center lines of vessels are
actually overlapping with minima ridges due to the fact
the vessel center has the lowest intensity in the cross
section of a vessel (though some large arteriolar vessels
have center reflection resulting in higher intensity in
the center, center reflex can be smoothed out by large
Gaussian kernels.)

From now on, minima ridges are simply referred to
as ridges. The descriptor includes both the gradient
orientations (Fig. 6) and the adjusted maximum eigen-
value of the Hessian matrix. The gradients are com-
puted within an adaptive local window whose size is
dependent on the vessel radius. Therefore the first step
is to estimate the radius of vessels, which is obtained

http://en.wikipedia.org/wiki/cubic_equation
http://en.wikipedia.org/wiki/cubic_equation
http://en.wikipedia.org/wiki/cubic_equation
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using the adjusted maximum eigenvalue of Hessian
matrix, defined in Eq. 15. Let σ be the deviation of
the Gaussian kernel that produces the largest response,
then the radius of the vessel is

√
2σ according to the

discussion in the previous section. The reason that the
Hessian-based approach is chosen is that the response
R has a peak value at any position away from the vessel
center while the response in the multiscale matched
filters does not. Since the radius of most vessels in the
images in both DRIVE and STARE database is less
than 6 pixels, we set the σ of the Gaussian kernels at
scales from 0.5 to 6 with an interval of 0.5 to achieve
subpixel accuracy. The scale selection should be depen-
dent on the resolution of the images.

Let r be the estimated radius of a vessel, p be a pixel
of a ridge, and v be the unit vector along the ridge. The
local patch around p is first smoothed by a Gaussian
kernel with deviation σ = √

2/2r for suppressing noise,
then it is rotated so that the ridge is in horizontal
direction. The rotation angle is simply the angle be-
tween v and the horizontal direction. After the rotation,
the local patch is re-sampled at an interval of 0.20r
in both the horizontal and vertical directions. Linear
interpolation is used when the sampling point falls in
between pixels. The re-sampling produces a 11 × 21
grid, shown in Fig. 4. The grid captures the local profile
of vessels and is irrelevant to the vessel directions and
scales. Therefore, it improves the accuracy of gradient
computation especially for the small vessels.

The scale-space ridge descriptor is a 19 dimension
vector. The first 9 elements record the orientations of
gradients starting at column 3 and every other column
in the second row of the grid. Similarly, the second
9 elements record the orientations of the gradients in
the second row from the bottom of the grid. The last
element records the maximum response of the adjusted
largest eigenvalue of the Hessian matrix.

Figure 4 The grid for sampling the vessel profile.

4 The Training of Models Based on Ridge Descriptors

With the ridge descriptors, we can built a set of distribu-
tion models of the ridge descriptors and use the models
for segmenting vessel center lines. Assuming that the
distribution of the ridge descriptors at the center lines
for vessels of each particular radius is normal. Then
the mean and the covariance of the distribution can be
learned from the manual vessel segmentation provided
in the training set of DRIVE database.

In order to build the distribution model of the ridge
descriptors of the vessel center lines using the training
set, the vessel center lines should be found first. The
vessel center lines can be found by the checking the
common pixels between the manual segmentation and
the ridges. The ridge detection method used in this pa-
per is described in Kalitzin [24]. As has been discussed
earlier, ridges are defined as points where an image
I(x) has an extremum in the direction of the largest
curvature. In other words, ridges are points in the image
where the first order derivative in the direction of the
largest curvature changes sign. The direction of the
largest curvature is the eigenvector corresponding to
the largest eigenvalue λ of the Hessian matrix H and
the largest eigenvalue is the largest curvature. The sign
of λ indicates whether a local minima (λ > 0) or a local
maxima (λ < 0) is found. To improve the accuracy,
derivatives are computed after convolving the image
with a Gaussian kernel of deviation σ . Convolving the
image with Gaussian kernels of various σ can be used to
find the ridge of multiple scales according to the scale-
space theory [23]. After computing the gradients and
the eigenvalues of Hessian matrices, for each pixel x, a
scalar ρ(x, σ ) can be computed as follows

ρ(x, σ ) = −1

2
sign(λ)|sign(�I(x + εv, σ ) · v)

−sign(�I(x − εv, σ ) · v)| (23)

where � is a gradient operator and v is the unit-vector
in the direction of the largest curvature. Parameter ε

controls the spacial accuracy of the point set to be
detected. In the continuous case, ε can be infinitely
small. Since images are discrete, the natural choice
for ε is 1. When x + εv falls in between pixels, linear
interpolation is used to get the gradient. All the image
processing discussed in this paper is on the green chan-
nel of the color retinal images, since the contrast in the
green channel is larger than that in the red and blue
channels. Figure 5 shows the green channel of a retinal
image and the ridges detected when σ = 1.

For each pixel p in the ridge, the vessel radius at p
is estimated by finding the deviation of the Gaussian
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Figure 5 a The green
channel of a fundus image.
The radius of the FOV is 540
pixels. b The local minimal
ridges of a, σ = 1.0 pixel. Due
to noise, some pixels in the
center of the image are
detected as ridge pixels. A
subset of the ridges coincide
with the vessels center lines.

(a) (b)

kernel that produces the largest response as defined in
Eq. 15. Then the ridge descriptor at p is computed. Let
Dr be the set of all descriptors for ridge pixels where
the vessel radius is equal to r. Then the centroid of the
model for vessels whose radius is r is the mean vector
of Dr and the covariance matrix of vectors in Dr is used
as the covariance matrix of the model. In this way, we
have built statistical models for vessels of all radius.

5 Model-Based Vessel Center Segmentation

As we can see from the training stage, the models we
built is best suitable for segmenting the pixels near
the center lines. We assume that with center lines
segmented and radius estimated, it would be relatively
easy to find all vessel pixels quite accurately. In the
segmentation stage, the image is smoothed by Gaussian
kernels of multiple scales and the response R is com-
puted at each scale. If the maximum R at a pixel is posi-
tive, then this pixel becomes a candidate of ridge pixels
(in retinal images, vessels are darker than background).

For each ridge pixel candidate, the ridge descriptor
is computed in the same way as in the training process.
Let d be the descriptor computed at pixel p and r is the
estimated vessel radius at p. Then we can compare d
with the corresponding model. There are two ways to
evaluate the fitness between a descriptor and a given
model. One way is computing the density d given the
model. Due to the fact that smaller vessels are usually
more subject to noise, the distribution of descriptors
of small vessels are less concentrated than that of the
descriptors of larger vessels. So the density would be
biased in favor of the larger vessels. To eliminate this

bias, we compute the following value for each candidate
given its ridge descriptor d:

v = (d − μr) ∗
∑−1

r
∗(d − μr)

′ (24)

where μr and �r are the centroid and the covariance
matrix of the model for vessels of radius equal to r.
The magnitude of v indicates how far the descriptor
at the current pixel is from the centroid μr. Larger v

means the current pixel is more unlikely to be a pixel
on a vessel center line, vice versa. Thresholding on v

will provide a segmentation of the vessel center lines.
For a given threshold t, all candidates whose v values
are smaller than t can be marked as vessel center line
pixels. According to the way the ridge descriptors are
computed, if the vessel radius is r, then the vessel radius
on the smoothed local patch would be (1 + √

2/2)r.
Since the gradients of the local descriptor are computed

y

x

+r

 r

Figure 6 The gradient model of 2D vessels. The magnitude of the
gradients increases from the center of the vessel to the boundary.
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Figure 7 The sample
segmentation results of two
images in the test set of
DRIVE database. The retinal
images are shown in the first
column (a, e). The second
column is the manual
segmentation (b, f). The
segmentation using threshold
10 is shown in the third
column (c, g). The last
column shows the results
after removing some small
connected components (d, h).

(a) (b) (c) (d)

(e) (f) (g) (h)

at location of distance 0.8r from the sampling grid
center, not only pixels on the vessel center lines but
also the pixels whose distance from the center lines is
no more than (1 + √

2/2)r − 0.8r ≈ 0.58r are expected
to have descriptors resulting low v values, therefore

being segmented as center line pixels. After removing
small connected components, the final result of vessel
center lines are detected by finding the common pixels
in the segmentation and the detected ridge pixels using
method in Section 4 (Fig. 6).

Figure 8 The segmentation
results using the model
trained on the training set of
the DRIVE database. a ROC
curve of the segmented vessel
center lines on the DRIVE
test set. The area under ROC
curve is 0.9584. b The
percentage of the center lines
of small vessels segmented at
each threshold level in the
DRIVE database. c ROC
curves on the STARE
database. The area under the
ROC curve is 0.9421. d The
percentage of the center lines
of small vessels segmented in
the STARE dataset.
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Table 1 FPs and TPs at
multiple threshold levels on
the test set of DRIVE
database.

t 1 4 8 12 16 20 24 28

FPs 0 0.0092 0.0610 0.1865 0.3070 0.3905 0.4513 0.4927
TPs 0.1376 0.6781 0.8582 0.9266 0.9591 0.9737 0.9815 0.9857

6 Experiments

We tried the proposed segmentation method on two
retinal image databases. The first database is known
as DRIVE and is collected by Niemeijer [25]. DRIVE
consists of 40 images (seven with pathologies) captured
by a Canon CR5 3CCD camera with a 45 degree
field of view (FOV). The images are of size 565*584
pixels with 8 bits per color channel. For each image,
a mask image is provided that delineates the FOV.
The images are divided into a training set and a test
set, each containing 20 images. The test set has four
images with pathologies. All images in DRIVE are
manually segmented. The images in the test set were
segmented twice, resulting in a set A and a set B. In set
A, 12.7% of pixels were marked as vessel against 12.3%
in set B. The performance of the proposed approach is
evaluated on the test set using set A.

The second database is made public by Hoover [9]
and is known as STARE. The STARE database con-
sists of 20 images (10 with pathologies) captured by
a TopCon TRV-50 fundus camera at 35 degree FOV.
Each image has 700*605 pixels with 8 bits per color
channel. All the images are manually segmented by two
observers. The first observer marked 10.4% of pixels as
vessel, the second one 14.9%. The performance of the
proposed method is evaluated using the segmentation
of the first observer as ground truth.

Figure 7 shows the sample segmentation results on
two images in the test set of DRIVE database. The first

image is normal while the second contains pathologies.
As we can see, the segmentation can find most of the
vessels with small amount of false positives. In order
to quantitatively evaluate the performance of the pro-
posed approach in segmenting vessel center lines, we
use receiver operating characteristic (ROC) curves. In
this evaluation, the threshold t varies from 1 to 100.
At each threshold level, the segmentation undergoes a
small component removal process in which the small
connected components are moved if they satisfy the
either one of the following two conditions:

– containing less than 10 pixels
– width-to-length ratio of the bounding rectangle

larger than 0.20 and containing less than 20 pixels

The connected components are found by 8-direction
continuity. The ground truth of vessel center lines
is obtained by finding the common pixels in the ridges
detected using the method in Section 4 and the manual
segmentation. The ratio between true positives and
total known ridge pixels, and the ratio between false
positives and total center line pixels detected by the
approach are computed at each threshold level for the
ROC curve. Figure 8 shows the ROC curve on images
in the testing set of DRIVE database and the ROC
curve on the images in STARE database using the mod-
els learned from the training set of DRIVE database.
Table 1 shows the FPs and TPs at eight threshold levels
t on images in the test set of DRIVE database. The

Figure 9 Small vessels of
diameter less than 3 pixels
obtained from the manual
segmentation of two retinal
images. The manual
segmentation of a and b are
shown in Fig. 7b and f
respectively.

(a) (b)
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areas under the ROC curves on DRIVE and STARE
databases are 0.95848 and 0.9421 respectively.

To evaluate the performance of the proposed ap-
proach in segmenting the center lines of small vessels,
for each given manual segmentation in the test set of
DRIVE database and the manual segmentation in the
STARE database, a binary image that contains the
vessels of diameter less than 3 pixels is created through
morphological operation. Figure 9 shows two sample
images of small vessels. The percentage of small vessel
center lines segmented at each threshold level is shown
in Fig. 8(b) and (d).

The proposed method is programmed using Matlab
and experiments discussed above are carried on a HP
a1710n desktop with two AMD64 processor at 2.2 Ghz
and 3 GB memory. It takes 895 s to build the ridge
descriptor models on the 20 images in the training set
of the DRIVE database and 3360 s to compute the
v defined in Eq. 24 for all ridge candidates in the 20
images of the testing set of the DRIVE database. The
time cost increases quickly with the increased number
of scales and the size of the smoothing Gaussian kernel
at each scale.

7 Conclusion and Future Work

In this paper, the responses of two vessel radius estima-
tion approaches at any point in the cross section of a
vessel is studied. The study reveals that the response
of the convolution with the adjusted second order
Gaussian derivative does not have maxima except at
the vessel center, and that the response of normalized
maximum principal curvature has maxima at any point
in the cross section of a vessel. The study indicates that
for the multiple scale matched filter that uses the con-
volution with the second order Gaussian derivative, the
radius estimate is only valid at the vessel center. For the
approach that uses the normalized maximum principal
curvature, the study shows the relation between the
scales of the Gaussian kernels and the vessel radius is
dependent on distance from the vessel center.

This paper also proposed a new vessel ridge seg-
mentation approach based on a scale-space descrip-
tor, which captures the normalized maximum principal
curvature and the orientations of local gradients. The
segmentation is based on multiple-scale models learned
from a training set with ground truth given. Evaluation
of the performance on images in DRIVE and STARE
databases shows that the ridge-descriptor can success-
fully segment the vessel center lines very accurately.
Most of the existing approaches focuses on the segmen-
tation of all vessel pixels and no quantitative evaluation

on their performance in the segmentation of small
vessels are given. The ROC curves on segmenting
all vessel pixels can not reflect the performance on
small vessels since the pixels belonging to small vessels
are only a relatively small portion of all vessel pixels.
While focusing on the vessel center lines, this approach
proposed in this paper have demonstrated performance
in segmenting the vessel center lines including the
center lines of small vessels, though quantitative com-
parison with the existing methods are not available.
The future work would be to monitor the vessel radius
and the vessel growth in patients with pathologies so
as to find the relation between the development of
pathologies and the vessel deformation. The final goal
would be early detection of certain diseases based on
analyzing the retinal images.
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