Dr. K. G. TeBeest
***************************************************************** SIMPSON's - 3/8 RULE ALGORITHM (pseudocode) To approximate the integral of a function f(x) on interval [a,b] using n subintervals. INPUT: f(x) – the function to be integrated a – lower limit of interval of integration b – upper limit of interval of integration n – the number of subintervals to divide interval [a,b] NOTE: n must be divisible by 3 ***************************************************************** 1. enter: f(x), a, b, n 2. set SECTIONS = n/3 set h = (b-a) / n set APPROX = 0.0 3. Repeat steps (a–e) for i from 1 to SECTIONS: a. set x0 = a + 3 * (i–1) * h b. set x1 = x0 + h c. set x2 = x1 + h d. set x3 = x2 + h e. set APPROX = APPROX + f(x0) + 3*f(x1) + 3*f(x2) + f(x3) 4. set INTEGRAL = 3 * h/8 * APPROX 5. print INTEGRAL COMMENT: Make sure you print the result in floating point (decimal) form; you may need to use the Maple "evalf" command.