In a previous assignment, we saw that the equation

$$
\begin{equation*}
e^{x}=2 x^{2} \tag{1}
\end{equation*}
$$

has three solutions on the interval $-2 \leq x \leq 3$.

1. Most equations can be expressed in fixed point form $(x=g(x))$ in multiple ways. For example, show that Eq. (1) can be expressed as

$$
\begin{equation*}
x= \pm \sqrt{\frac{e^{x}}{2}} . \tag{2}
\end{equation*}
$$

2. To approximate the negative root, we must use the negative sign in Eq. (2).
(a) Plot functions x and $-\sqrt{e^{x} / 2}$ on a common plot in Maple on the interval $-1 \leq x \leq 0$. Restrict the vertical range to $-1 \leq y \leq 0$, make the curves respectively red and blue, give them a thickness of 4 or 5 , make the plot size 300×300 pixels, and include the plot option scaling = constrained.
(b) Using $x_{0}=-1.0$, apply 4 iterations of the fixed point method with Aitken acceleration to approximate the root near $x=-0.5$.
3. Eq. (1) can be expressed in another fixed point form by solving for the x in the exponent. Do so to show that we obtain

$$
\begin{equation*}
x=\ln \left(2 x^{2}\right) . \tag{3}
\end{equation*}
$$

(a) Plot functions x and $\ln \left(2 x^{2}\right)$ on a common plot in Maple on the interval $0 \leq x \leq 4$. Restrict the vertical range to $0 \leq y \leq 4$, make the curves respectively red and blue, give them a thickness of 4 or 5 , make the plot size 300×300 pixels, and include the plot option scaling = constrained.
(b) Using $x_{0}=4.0$, apply 4 iterations of the fixed point method with Aitken acceleration to approximate the root near $x=2.5$.

