The equation

$$
\begin{equation*}
e^{x}=2 x^{2} \tag{1}
\end{equation*}
$$

has three solutions on the interval $-2 \leq x \leq 3$.

1. To see this, plot functions e^{x} and $2 x^{2}$ on a common plot in Maple on the above interval. Make the curves respectively red and blue, give them a thickness of 4 or 5 , and make the plot size 300×300 pixels. Clearly the two functions intersect at three points.
2. Now express Eq. (1) in zero form $(f(x)=0)$ by subtracting everything to the LHS. Plot the function $f(x)$ on the interval $-2 \leq x \leq 3$. Make this curve blue with an appropriate thickness and make the plot size 300×300 pixels. Clearly function $f(x)$ has three zeros (x intercepts).
3. Notice that $f(x)$ has two critical points. What did we say about critical points when using Newton's method?
4. Using $x_{0}=-1.0$, apply 6 iterations of Newton's method to approximate the solution near $x=-0.5$.
5. Using $x_{0}=1.2$, apply 6 iterations of Newton's method to approximate the solution near $x=1.5$.
6. Using $x_{0}=3.0$, apply 6 iterations of Newton's method to approximate the solution near $x=2.5$.
