MATH-305

Runge—Kutta—Fehlberg Method

To approximate the solution of the 1st order IVP:

v = flzy),
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y(zo) = Yo -

Suppose we have approximated y, at node x,,, and now we seek to approximate ¥, ., at node z, ;.

Calculate these in the order given:
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Yns1 = Ul (gives an error estimate for y at node z,, ;).

1. We keep the value y,,., at node z,, ;.

2. “Error’ gives an error estimate for 3,1 at node x,, ;. Using 1o as an example: if the error estimate
exceeds our tolerance at node 1o (indicates that h is too large), then we return to node g, reduce
h, and recalculate 319 at the new node x1g.

On the other hand, if the error estimate at node 1 is significantly smaller than our tolerance (indicates
that A is much smaller than necessary), we may increase h and proceed to calculate y;; at node ;.
(In this case there's no need to back up to recalculate y.)

Copyright (©) 2002-2022 Kevin G. TeBeest. All rights reserved.

file Tkf45. tex 03,/22/2022



