MATH-305, Numerical Methods and Matrices

Prof. Kevin TeBeest, Ph.D.

Course Learning Objectives:

- 1. Effectively approximate the real roots of single variable equations.
- 2. Approximate functions using interpolating polynomials.
- 3. Accurately and efficiently approximate single variable derivatives and integrals.
- 4. Perform matrix arithmetic and inverses, determinants, norms and condition.
- 5. Efficiently and effectively solve linear systems.
- 6. Numerically solve first order initial value problems.

APPROXIMATE LECTURE SCHEDULE ^{1,2}

WEEK	SECTIONS
1	- Introduction
	 Errors & Truncation Errors
	0.7 — Polynomial Nested Form: Horner's Method
	1.1 – Zeros of Functions: Bisection Method
2	1.1 — Bisection Method Error Analysis
	1.2 — False Position / Regula Falsi
	1.3 – Newton's Method
3	1.5 — Fixed Point Method
	- Fixed Point Convergence Theorem
	1.5 – Fixed Point Method with Aitken Acceleration
4	EXAM 1 (tentative)
	3.2 — Newton-Gregory Polynomial Interpolation
	- cont'd
5	5.2 – Numerical Integration: Trapezoidal Rule
5	5.3 – Numerical Integration: Simpson's-1/3 Rule
	5.3 – Numerical Integration: Simpson's-3/8 Rule
6	5.6 — Numerical Integration: Gauss Quadrature cont'd
	5.1 — Numerical Differentiation
7	EXAM 2 (tentative)
	6.2 — Initial Value Problems: Euler Method
	— Error Analysis
	 Implicit Euler Method
8	 Trapezoidal Method
	 Modified Euler Method
	 Classical Runge-Kutta Method
9	 Runge-Kutta-Fehlberg & Runge-Kutta-Verner Methods³
	2.1 — Matrices & Elementary Matrix Operations
	2.2 – Linear Systems
	2.2 — Gauss Elimination
10	2.2 – LU Decomposition
	- Determinants
	— Inverses
	2.4 — Norms, Residual, and Condition Number
11	$2.5 - \text{Iterative Methods}^3$
	$3.3 - \text{Splines}^3$
	$3.6 - \text{Least Squares}^3$
	Finish remaining material
	FINAL EXAM – date & time scheduled by Administration
ule is approximate as some sections will take longer to cover than others. You should refer to the	

¹ This schedule is approximate as some sections will take longer to cover than others. You should refer to the "Course Web Site" daily for actual assignments.

² Two or three Maple programming assignments (projects) will be scattered throughout the material.

³ Instructor's choice if time permits.