You can't appreciate the beauty of the Newton-Gregory method for constructing a polynomial through points without seeing what must be done if we use brute force algebra, as we would if we did not now know better. So consider the following data.

i	x_{i}	f_{i}
0	-2	40
1	1	10
2	4	-164
3	7	166

1. Suppose we construct the polynomial containing points indexed $i \in[0,1]$. That polynomial would look like

$$
P(x)=b x+a .
$$

To determine the coefficients a and b using brute force algebra, we would have to solve these two equations for the two unknowns a and b :

$$
\begin{aligned}
P(-2) & =-2 b+a=40, \\
P(1) & =b+a=10,
\end{aligned}
$$

to obtain $a=20$ and $b=-10$. So the polynomial containing points indexed $i \in[0,1]$ is

$$
\begin{equation*}
P_{[0-1]}(x)=-10 x+20 \tag{1}
\end{equation*}
$$

2. Now suppose we want the polynomial containing points indexed $i \in[0,1,2]$. That polynomial would look like

$$
P(x)=c x^{2}+b x+a .
$$

To determine the coefficients a, b, and c using brute force algebra, we would have to solve these three equations for the three unknowns a, b, and c :

$$
\begin{aligned}
P(-2) & =4 c-2 b+a=40 \\
P(1) & =c+b+a=10 \\
P(4) & =16 c+4 b+a=-164
\end{aligned}
$$

to obtain $a=36, b=-18$, and $c=-8$. So the polynomial containing points indexed $i \in[0,1,2]$ is

$$
\begin{equation*}
P_{[0-2]}(x)=-8 x^{2}-18 x+36 . \tag{2}
\end{equation*}
$$

Notice that polynomials (1) and (2) have no common coefficients. That is, we cannot use polynomial $P_{[0-1]}(x)$ to build polynomial $P_{[0-2]}(x)$ as we can when using the Newton-Gregory method!
3. Now suppose we want the polynomial containing points indexed $i \in[0,1,2,3]$. That polynomial would look like

$$
P(x)=d x^{3}+c x^{2}+b x+a .
$$

To determine the coefficients a, b, c, and d using brute force algebra, we would have to solve these four equations for the four unknowns a, b, c, and d :

$$
\begin{aligned}
P(-2) & =-8 d+4 c-2 b+a=40, \\
P(1) & =d+c+b+a=10, \\
P(4) & =64 d+16 c+4 b+a=-164, \\
P(7) & =343 d+49 c+7 b+a=166 .
\end{aligned}
$$

to obtain $a=68, b=-42, c=-20$ and $d=4$. So the polynomial containing points indexed $i \in[0,1,2,3]$ is

$$
\begin{equation*}
P_{[0-3]}(x)=4 x^{3}-20 x^{2}-42 x+68 \tag{3}
\end{equation*}
$$

Notice that polynomials (2) and (3) have no common coefficients. That is, we cannot use polynomial $P_{[0-2]}(x)$ to build polynomial $P_{[0-3]}(x)$ as we can when using the Newton-Gregory method!

