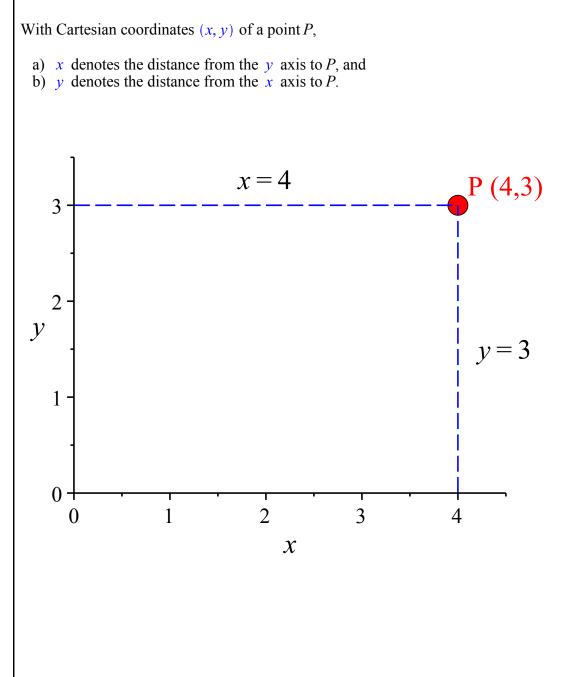
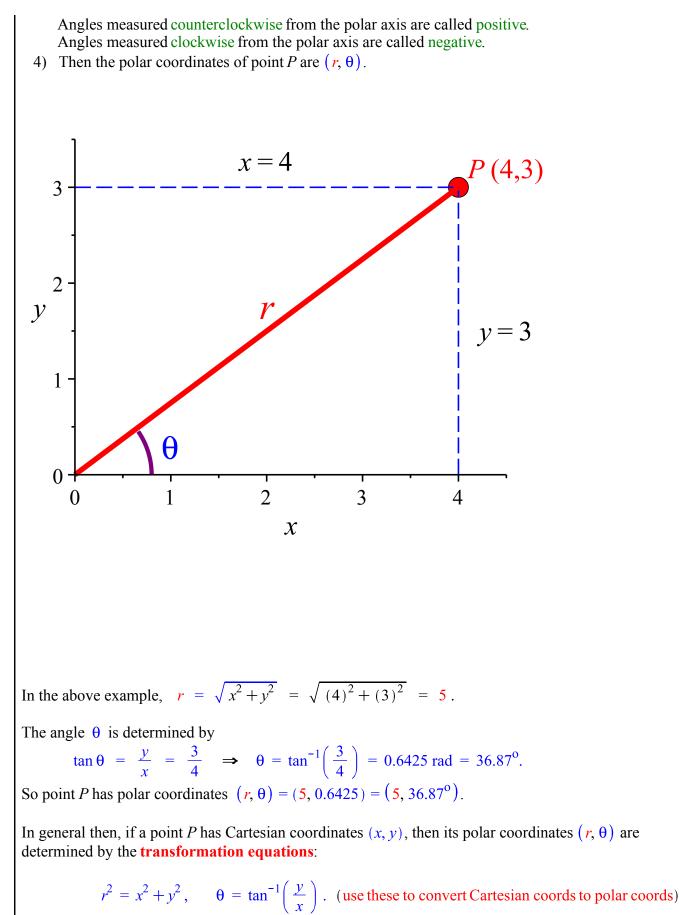
10.3 Polar Coordinates

Copyright Prof. Kevin G. TeBeest Dept. of Mathematics Kettering University 07/11/2012



We can define an alternative coordinate system, called **polar coordinates**, in the following manner.

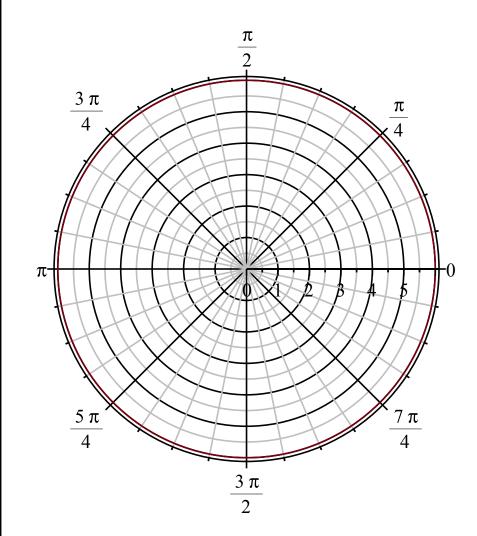
- 1) Define the ray \underline{OP} from the origin O to P.
- 2) Let r denote the length of ray <u>*OP*</u>.
- 3) Let θ denote the angle from the +x axis to ray <u>OP</u>. The +x axis is called the **polar axis**.



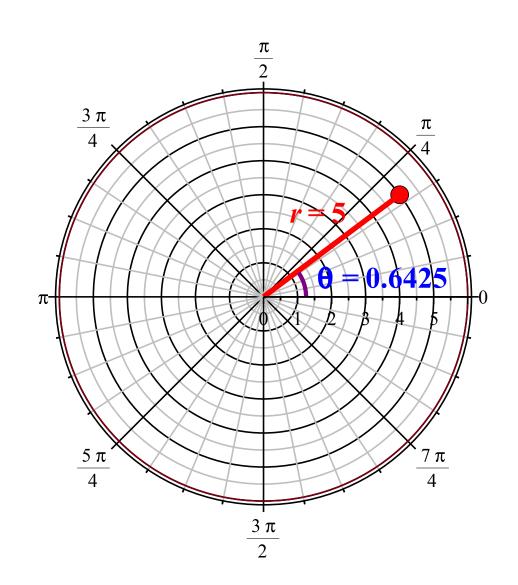
 $x = r \cos \theta$, $y = r \sin \theta$. (use these to convert polar coords to Cartesian coords) We define the origin in polar coordinates, called the **pole**, by

$$(r, \theta) = (0, \theta)$$
 for any angle θ .

Good polar graph paper would look like



Here's the point (x, y) = (4, 3), *i.e.* $(r, \theta) = (5, 0.6425)$ plotted in polar coordinates:



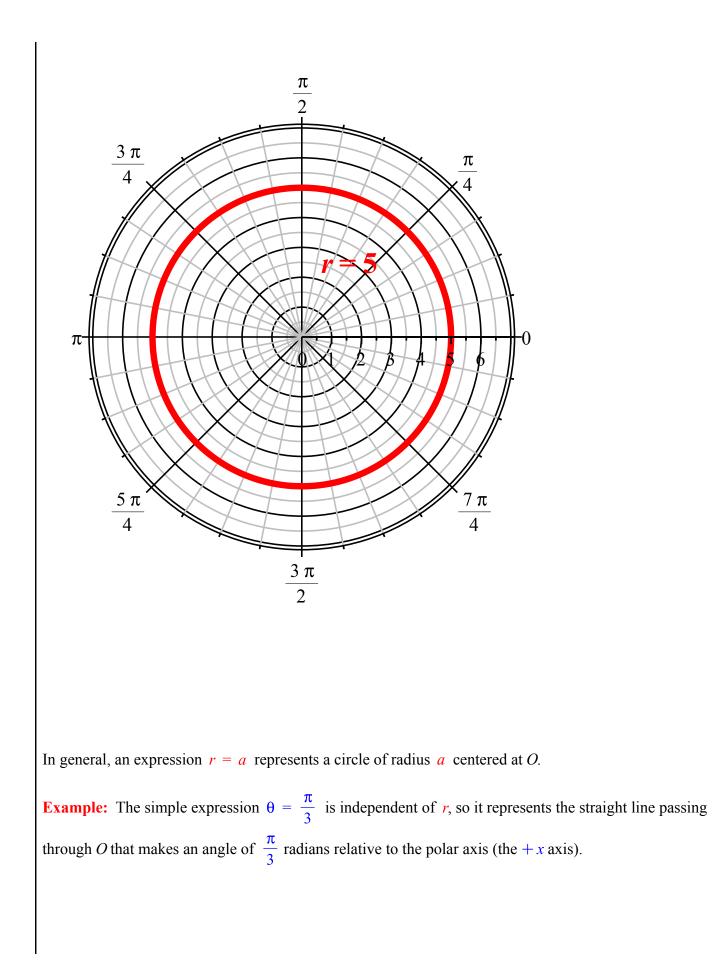
Note: We've merely described the point *P* in space using different coordinate systems.

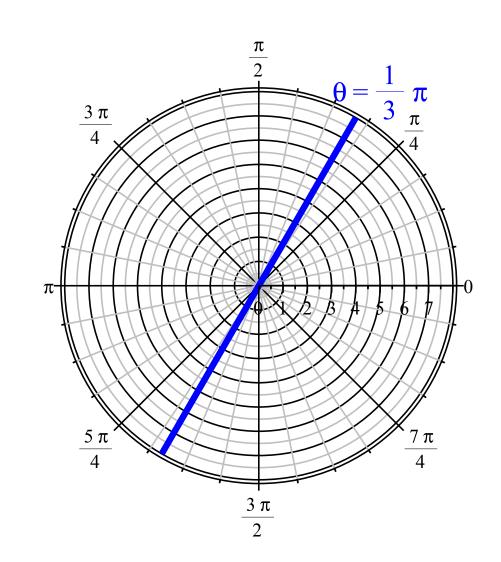
Curves in Polar Coordinates

A curve in polar coordinates is usually represented by a formula of the form

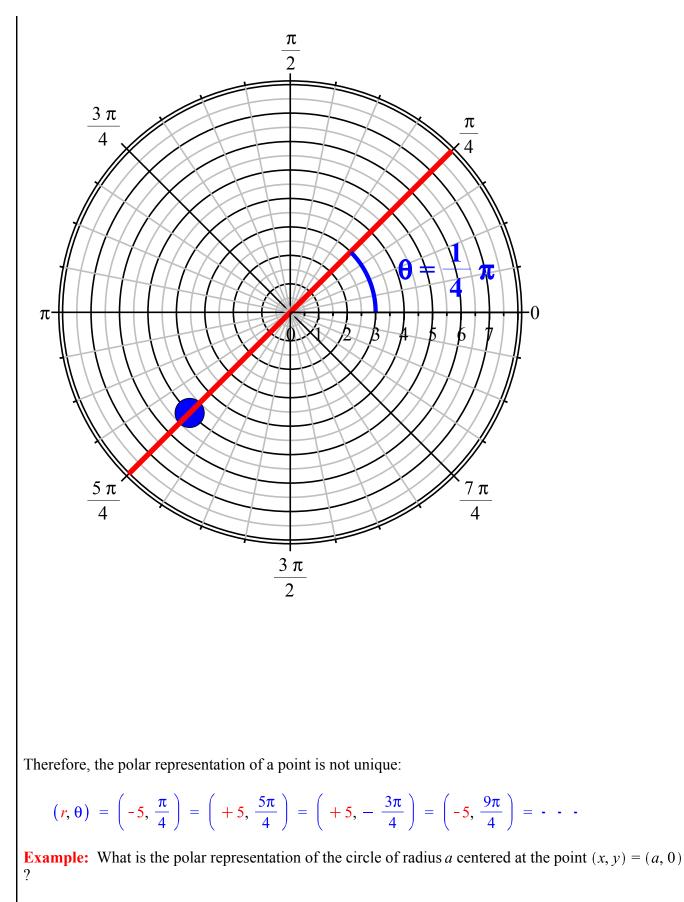
$$r = f(\theta).$$

Example: The simple expression r = 5 is independent of θ , so it represents the set of all points that are 5 units from the origin, *i.e.*, a circle of radius 5 centered at *O*.





Note: If the radial coordinate *r* is negative, *e.g.*, the point $(r, \theta) = \left(-5, \frac{\pi}{4}\right)$, then the point is along the ray $\theta = \frac{\pi}{4}$ but 5 units in the opposite direction.



$$(\mathbf{x} - a)^2 + y^2 = a^2$$

 $\Rightarrow \qquad x^2 - 2 a x + a^2 + y^2 = a^2$

where $x = r \cos \theta$ and $y = r \sin \theta$. Substitute into the above:

$$r^{2}\cos^{2}\theta - 2 a r \cos \theta + r^{2}\sin^{2}\theta = 0$$

$$\Rightarrow r^{2}(\cos^{2}\theta + \sin^{2}\theta) = 2 a r \cos \theta$$

$$\Rightarrow r = 2 a \cos \theta.$$

So the polar representation of the circle of radius *a* centered at the point (x, y) = (a, 0) is

$$r = 2a \cos \theta$$
, $0 \le \theta \le \pi$

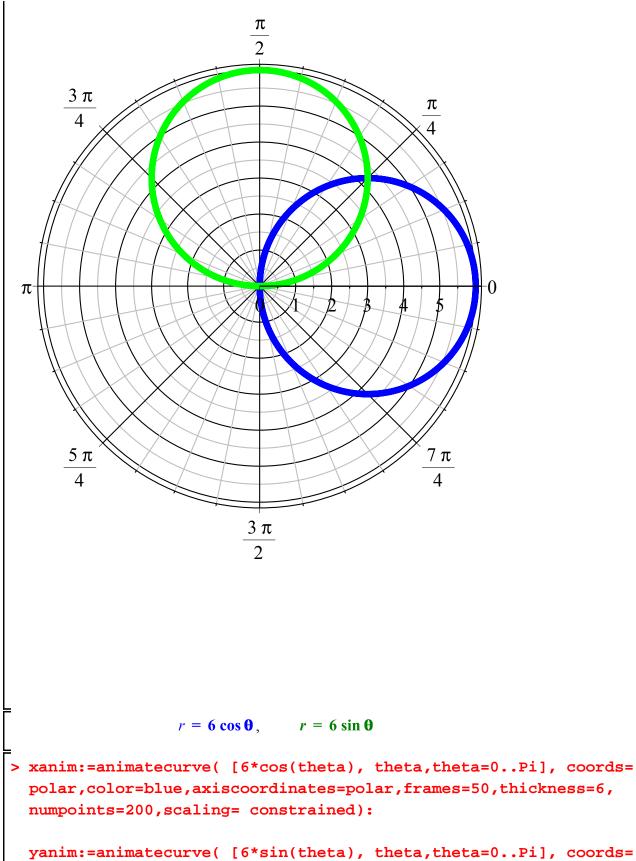
In a similar way, the polar representation of the circle of radius *a* centered at the point (x, y) = (0, a) is

$$r = 2a \sin \theta$$
, $0 \le \theta \le \pi$.

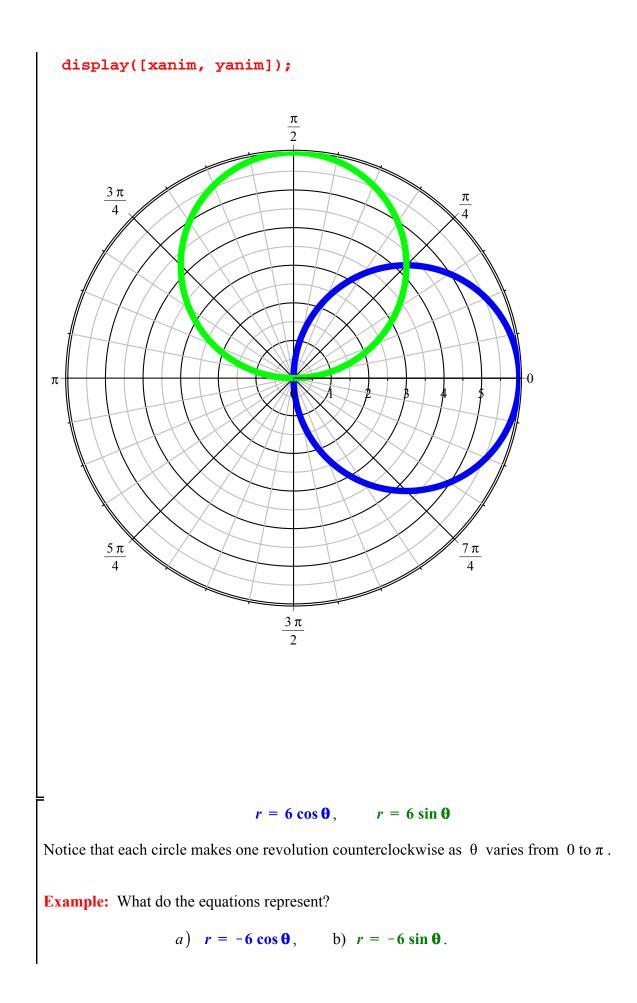
Example: The circle of radius 3 centered at the point (x, y) = (3, 0) is (blue), and the circle of radius 3 centered at the point (x, y) = (0, 3) is (green),

$$r = 6 \cos \theta$$
, $r = 6 \sin \theta$

```
> restart ;
> with(plots): with(plottools):
> xcircle:=polarplot(2*3*cos(theta),axesfont=[times,roman,14],
    thickness=6, color=blue):
    ycircle:=polarplot(2*3*sin(theta),thickness=6, color=green):
    display([xcircle,ycircle],coordinateview=[0..6.1,0..2*Pi]);
```



yanim:=animatecurve([6*sin(theta), theta,theta=0..Pi], coords= polar,color=green,axiscoordinates=polar,frames=50, thickness=6, numpoints=200,scaling=constrained):



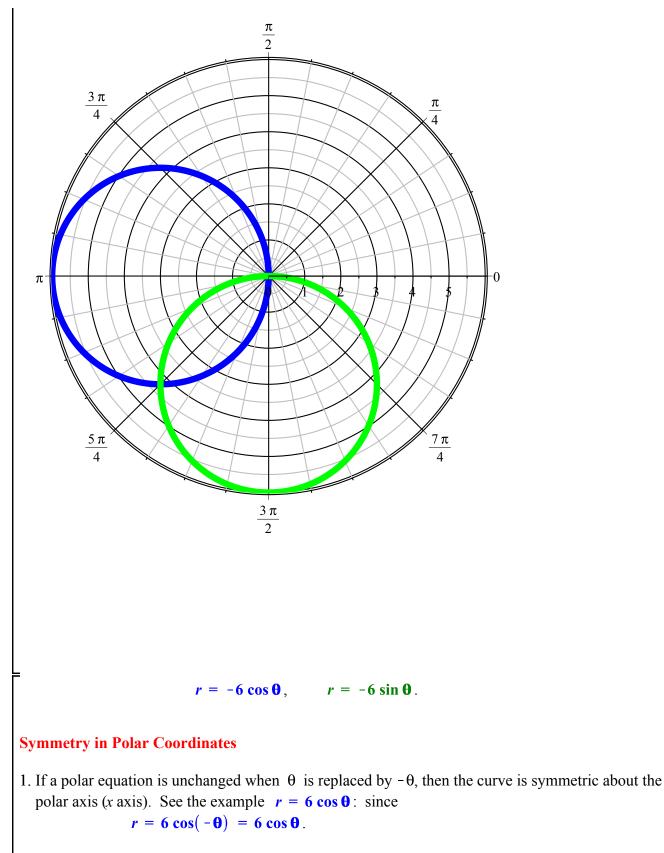
They are:

- a) a circle of radius 3 centered at (x, y) = (-3, 0) and
- b) a circle of radius 3 centered at (x, y) = (0, -3).

```
> xanim:=animatecurve( [-6*cos(theta), theta,theta=0..Pi],coords=
polar,color=blue,axiscoordinates=polar,frames=50,thickness=6,
numpoints=200,scaling=constrained ):
```

```
yanim:=animatecurve( [-6*sin(theta), theta,theta=0..Pi],coords=
polar,color=green,axiscoordinates=polar,frames=50,thickness=6,
numpoints=200,scaling=constrained ):
```

```
display([xanim, yanim]);
```



2. If a polar equation is unchanged when r is replaced by -r OR θ is replaced by $\theta + \pi$, then the curve is symmetric about the pole (origin). This means the curve remains unchanged if it is rotated 180° about the origin.

3. If a polar equation is unchanged when θ is replaced by $\pi - \theta$, then the curve is symmetric about the line $\theta = \frac{\pi}{2}$ (y axis). See the example $r = 6 \sin \theta$: since $r = 6 \sin(\pi - \theta) = 6 \sin(-\theta + \pi) = -6 \sin(-\theta) = 6 \sin(\theta)$.

Limaçons

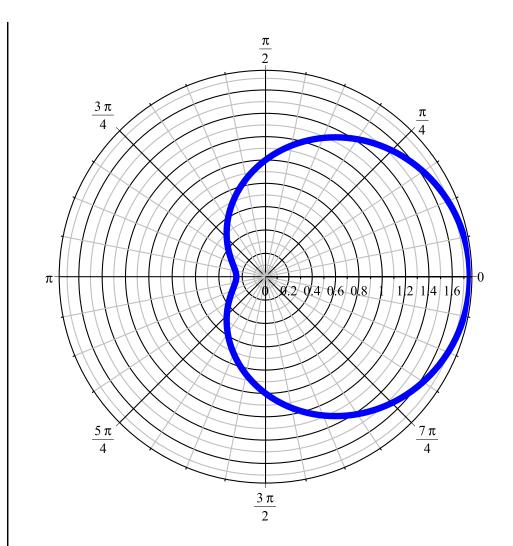
Consider a polar equation of the form

 $r = b + c \cos \theta$, for constants b and c.

For example, consider the limaçon

$$r=1+\frac{3}{4}\cos\theta.$$

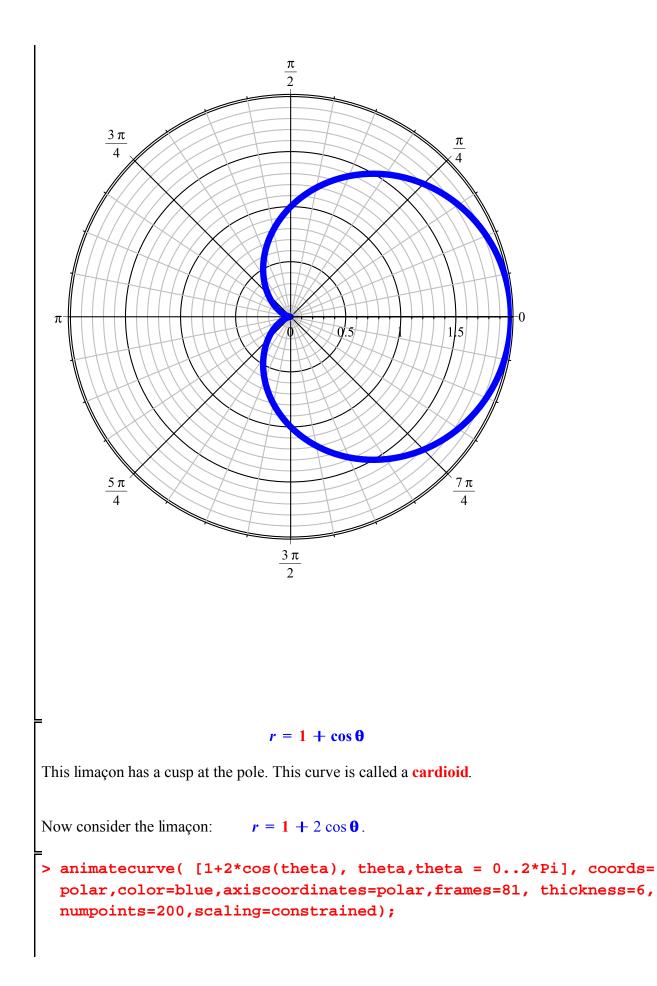
> animatecurve([1+3/4*cos(theta), theta,theta = 0..2*Pi], coords= polar,color=blue,axiscoordinates=polar,frames=81, thickness=6, numpoints=200,scaling=constrained);

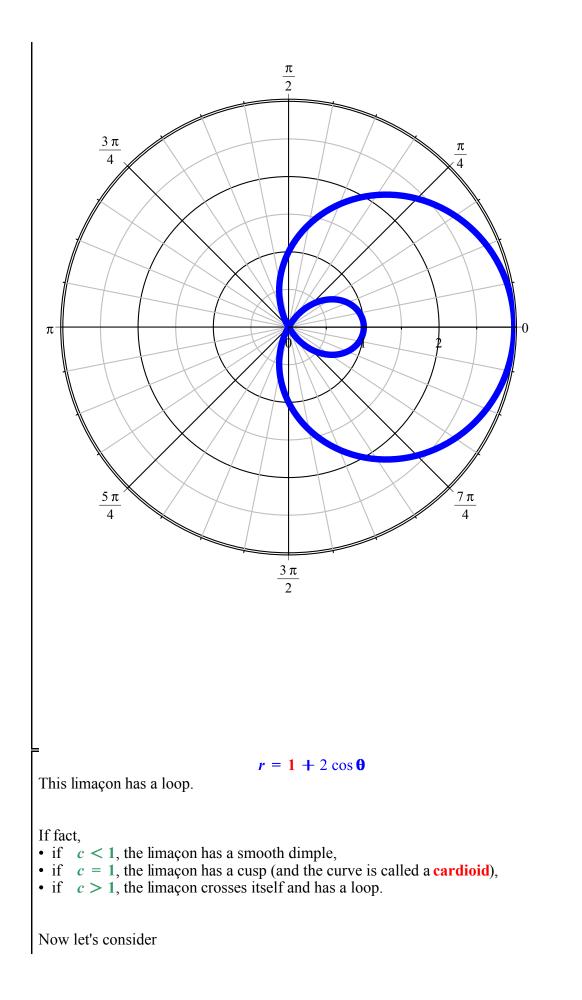


$$r=1+\frac{3}{4}\cos\theta$$

Now consider the limaçon: $r = 1 + \cos \theta$.

> animatecurve([1+cos(theta), theta,theta = 0..2*Pi],coords=polar, color=blue,axiscoordinates=polar,frames=81, thickness=6, numpoints=200,scaling=constrained);

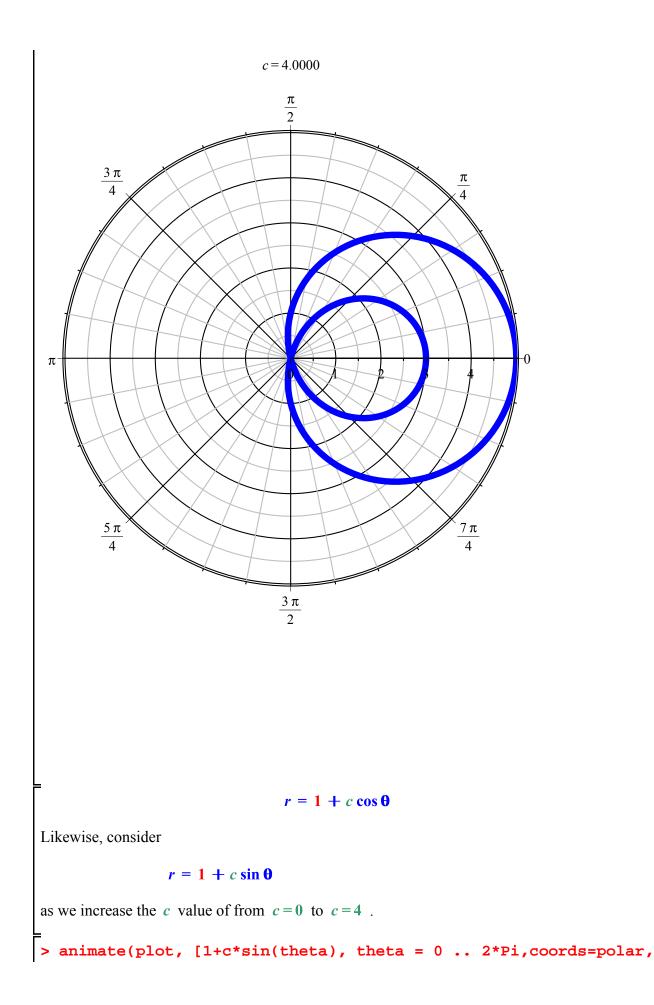


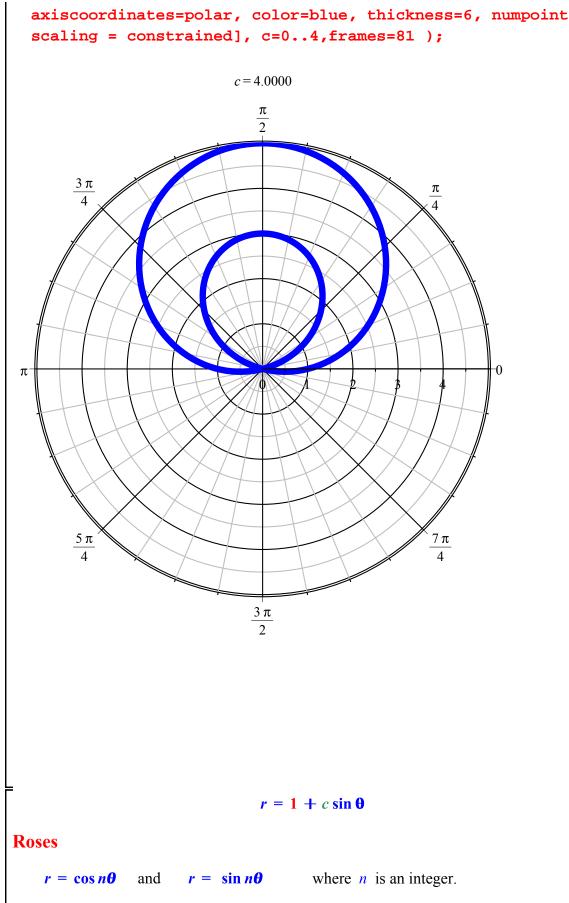


 $r = 1 + c \cos \theta$

as we increase the c value of from c=0 to c=4.

```
> animate(plot, [1+c*cos(theta), theta = 0 .. 2*Pi,coords=polar,
  axiscoordinates=polar, color=blue, thickness=6, numpoints=200,
  scaling = constrained], c=0..4,frames=81,filled=[color="Blue",
  transparency=0.5] );
```

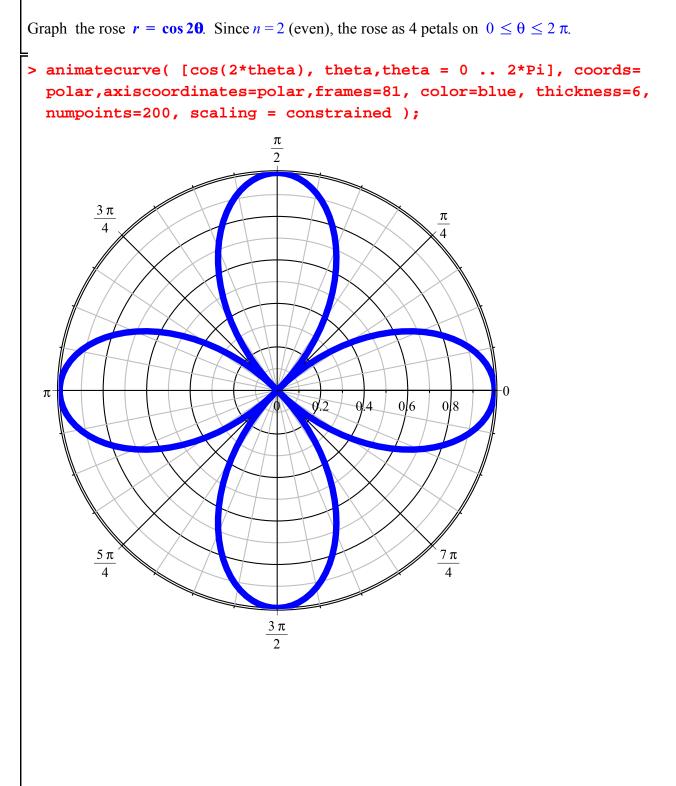




axiscoordinates=polar, color=blue, thickness=6, numpoints=200,

- If *n* is even, then the rose has 2n petals on interval $0 \le \theta \le 2\pi$.
- If *n* is odd, then the rose has *n* petals on interval $0 \le \theta \le \pi$.

Example:

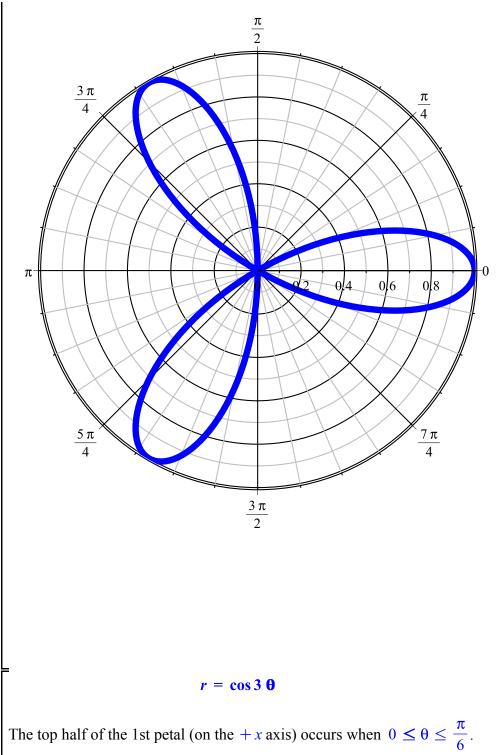


The top half of the 1st petal (on the + x axis) occurs when $0 \le \theta \le \frac{\pi}{4}$. The 2nd petal (on the -y axis) occurs when $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$. The 3rd petal (on the -x axis) occurs when $\frac{3\pi}{2} \le \theta \le \frac{5\pi}{4}$. The 4th petal (on the + y axis) occurs when $\frac{5\pi}{4} \le \theta \le \frac{7\pi}{4}$. The bottom half of the 1st petal (on the + x axis) occurs when $\frac{7\pi}{4} \le \theta \le 2\pi$.

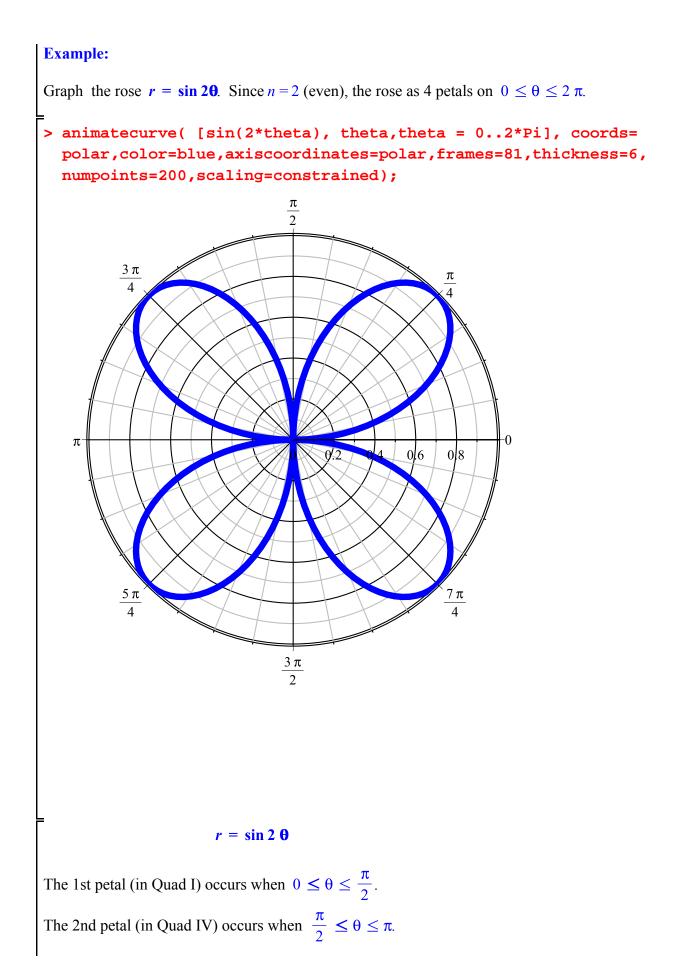
Example:

Graph the rose $r = \cos 3\theta$. Since n = 3 (odd), the rose as 3 petals on $0 \le \theta \le \pi$.

```
> animatecurve( [cos(3*theta), theta,theta = 0 .. Pi], coords=
polar,axiscoordinates=polar,frames=81, color=blue, thickness=6,
numpoints=200, scaling = constrained );
```



The top half of the 1st petal (on the +x axis) occurs when $0 \le \theta \le \frac{\pi}{6}$. The 2nd petal (in Quad III along $\theta = \frac{2\pi}{6} = \frac{\pi}{3}$) occurs when $\frac{\pi}{6} \le \theta \le \frac{3\pi}{6}$. The 3rd petal (In Quad II along $\theta = \frac{4\pi}{6} = \frac{2\pi}{3}$) occurs when $\frac{3\pi}{6} \le \theta \le \frac{5\pi}{6}$. The bottom half of the 1st petal (on the +x axis) occurs when $\frac{5\pi}{6} \le \theta \le \pi$.

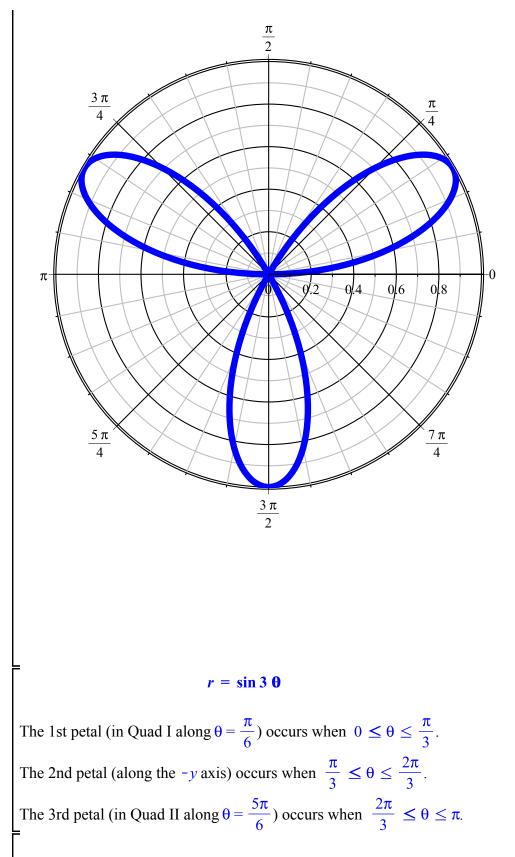


The 3rd petal (in Quad III) occurs when $\pi \le \theta \le \frac{3\pi}{2}$. The 4th petal (in Quad II) occurs when $\frac{3\pi}{2} \le \theta \le 2\pi$.

Example:

Graph the rose $r = \sin 3\theta$. Since n = 3 (odd), the rose as 3 petals on $0 \le \theta \le \pi$.

```
> animatecurve( [sin(3*theta), theta,theta = 0..Pi],coords=polar,
    color=blue,axiscoordinates=polar,frames=81,thickness=6,numpoints=
    200,scaling=constrained);
```



Slope of a Tangent Line in Polar Coordinates

Suppose we have a curve in polar coordinates given in the form

$$r = f(\mathbf{\theta})$$

Recall that the slope of the tangent line to a curve is $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$, where recall

$$x = r \cos \theta = f(\theta) \cos \theta$$
 and $y = r \sin \theta = f(\theta) \sin \theta$.

$$\frac{dx}{d\theta} = f'(\theta)\cos\theta - f(\theta)\sin\theta \text{ and } \frac{dy}{d\theta} = f'(\theta)\sin\theta + f(\theta)\cos\theta.$$

Therefore,

So

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}$$

Example: Determine where the cardioid has horixontal and vertical tangent lines.

 $r = 1 + \sin \theta = f(\theta), \quad 0 \le \theta \le 2 \pi.$

Here $f(\theta) = 1 + \sin \theta$, so $f'(\theta) = \cos \theta$. So

$$\frac{dy}{dx} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos^2\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-\sin^2\theta - \sin\theta - \sin^2\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-\sin\theta - 2\sin^2\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}.$$

a) The numerator is 0 if $\cos \theta = 0$ or $\sin \theta = -\frac{1}{2}$:

$$\theta = \frac{\pi}{2}, \quad \frac{3\pi}{2}, \quad \text{and} \quad \theta = \frac{7\pi}{6}, \quad \frac{11\pi}{6}$$

So the cardioid has horizonal tangent lines at the points with polar coordinates

$$(r, \theta) = \left(2, \frac{\pi}{2}\right), \left(2, \frac{3\pi}{2}\right), \left(\frac{1}{2}, \frac{7\pi}{6}\right), \left(\frac{1}{2}, \frac{11\pi}{6}\right).$$

denominator is 0 if $\sin \theta = -1$ or $\sin \theta = \frac{1}{2}$.

b) The denominator is 0 if $\sin \theta = -1$ or $\sin \theta = \frac{1}{2}$:

$$\theta = \frac{3\pi}{2}$$
, and $\theta = \frac{\pi}{6}$, $\frac{5\pi}{6}$.

NOTE: Since both numerator and denominator are 0 at $\theta = \frac{3\pi}{2}$, we must use L'Hospital's rule to

determine the slope of the tangent line at $\theta = \frac{3\pi}{2}$.

a) The numerator is 0 when:

$$\theta = \frac{\pi}{2}, \quad \frac{7\pi}{6}, \quad \frac{11\pi}{6}$$

So the cardioid has horizonal tangent lines at the points with polar coordinates

$$(r, \theta) = \left(2, \frac{\pi}{2}\right), \left(\frac{1}{2}, \frac{7\pi}{6}\right), \left(\frac{1}{2}, \frac{11\pi}{6}\right)$$

b) The denominator is 0 when:

$$\theta = \frac{\pi}{6}, \frac{5\pi}{6}$$

So the cardioid has vertical tangent lines at the points with polar coordinates

$$(r, \theta) = \left(\frac{3}{2}, \frac{\pi}{6}\right), \left(\frac{3}{2}, \frac{5\pi}{6}\right).$$

Now we use L'Hospital's rule to determine the slope of the tangent line at $\theta = \frac{3\pi}{2}$.

$$\lim_{\theta \to \frac{3\pi}{2}} \frac{dy}{dx} = \lim_{\theta \to \frac{3\pi}{2}} \frac{\cos \theta + 2\sin \theta \cos \theta}{1 - \sin \theta - 2\sin^2 \theta} \quad \text{trig identity}: \quad \sin 2\theta = 2\sin \theta \cos \theta$$
$$= \lim_{\theta \to \frac{3\pi}{2}} \frac{\cos \theta + \sin 2\theta}{1 - \sin \theta - 2\sin^2 \theta} \sim \frac{0}{0}$$
$$= \lim_{\theta \to \frac{3\pi}{2}} \frac{-\sin \theta + 2\cos 2\theta}{-\cos \theta - 4\sin \theta \cos \theta} \sim \frac{0}{0} \quad \text{by L'Hospital's rule}$$
$$= \lim_{\theta \to \frac{3\pi}{2}} \frac{-\sin \theta + 2\cos 2\theta}{-\cos \theta - 2\sin 2\theta} \quad \text{since} \quad \sin 2\theta = 2\sin \theta \cos \theta$$
$$= \frac{-(-1) + 2\cdot 0}{0 - 2\cdot 0}$$
$$= \frac{1}{0} = \infty.$$

So the cardioid also has a vertical tangent line at the point

 $(r, \theta) = \left(0, \frac{3\pi}{2}\right) = (0, 0)$, since this is the origin (the pole).

> plot(1+sin(theta), theta = 0..2*Pi,coords=polar,axiscoordinates= polar, color=blue, thickness=6,numpoints=200, scaling= constrained);

