MATH 203

Use proper mathematical notation at all times.

- 1. A surface is given by $z = x^3 + x^2y + xy^2 + y^3$. Determine
 - (a) $z_x(-1,2)$
 - (b) $z_y(-1,2)$

and then answer the following.

- i. State the slope of the tangent line to the surface at point (-1, 2, 5) in the plane parallel to the yz-plane.
- ii. State the slope of the tangent line to the surface at point (-1, 2, 5) in the plane parallel to the xz-plane.
- iii. At what rate is z changing at point (-1, 2, 5) in the plane y = 2?
- iv. At what rate is z changing at point (-1, 2, 5) in the plane x = -1?
- 2. For each of the following functions, determine (i) $\frac{\partial f}{\partial x}$ and (ii) $\frac{\partial f}{\partial y}$.
 - (a) $f(x,y) = x^2 \cos y^3$
 - (b) $f(x,y) = \sin(x^2y^3)$
 - (c) $f(x,y) = e^{x^2y^4}$
 - (d) $f(x,y) = e^{x^2 + y^4}$
 - (e) $f(x,y) = e^{x^2 + y^4} \tan y^3$
 - (f) $f(x,y) = e^{x^2} \cot(x^2 y^3)$
 - (g) $f(x,y) = \ln(x^2 y^4)$
 - (h) $f(x,y) = \frac{xy}{x+y}$

NOTE: In Maple, partial differentiation is no different from differentiation. Use Maple to check your answers to the above. For example,

$>$ f := x^2 * cos(y^3); $\langle ret angle$		defines f a	defines f as an expression	
$>$ diff(f,x); $\langle ret angle$			gives $\frac{\partial f}{\partial x}$	
$>$ diff(f,y); $\langle ret angle$			gives $\frac{\partial f}{\partial y}$	
$>$ diff(f,x,y); $\langle ret angle$			gives $\frac{\partial^2 f}{\partial y \partial x}$	
$>$ diff(f,x\$2); $\langle ret angle$			gives $\frac{\partial^2 f}{\partial x^2}$	
Prof. K.G. TeBeest © 2001	Kettering University	file: derivsup.tex	02/12/01	