Consider any quantity Q. We define

$$
\begin{aligned}
\text { change in } Q & \equiv \Delta Q \\
\text { relative change in } Q & \equiv \frac{\Delta Q}{Q}, \quad \text { and } \\
\text { percent change in } Q & \equiv \frac{\Delta Q}{Q} \cdot 100 \% .
\end{aligned}
$$

If changes are small, then

$$
\begin{aligned}
\text { change in } Q & \approx d Q \\
\text { relative change in } Q & \approx \frac{d Q}{Q}, \quad \text { and } \\
\text { percent change in } Q & \approx \frac{d Q}{Q} \cdot 100 \% .
\end{aligned}
$$

EXAMPLE: Consider an ideal gas whose temperature increases by 2% and whose volume decreases by 4%. What is the approximate $\%$ change in pressure?

For an ideal gas, $P V=m R T$, or since m and R are constants,

$$
\begin{equation*}
P=k \frac{T}{V}=k T V^{-1} \tag{1}
\end{equation*}
$$

where were merely let $k=m R=$ constant.
Given:

$$
\begin{align*}
\% \text { change in } T & \equiv \frac{\Delta T}{T} \cdot 100 \%=2 \% \tag{2}\\
\% \text { change in } V & \equiv \frac{\Delta V}{V} \cdot 100 \%=-4 \% \tag{3}
\end{align*}
$$

Want:

$$
\% \text { change in } P=\frac{\Delta P}{P} \cdot 100 \%
$$

First, since P is a function of T and $V(P=P(T, V))$, then the differential of P is

$$
d P=\frac{\partial P}{\partial T} d T+\frac{\partial P}{\partial V} d V
$$

Then since changes are small,

$$
\begin{equation*}
\Delta P \approx \frac{\partial P}{\partial T} \Delta T+\frac{\partial P}{\partial V} \Delta V \tag{4}
\end{equation*}
$$

From Eq. (1),

$$
\begin{aligned}
& \frac{\partial P}{\partial T}=\frac{\partial}{\partial T}\left(k T V^{-1}\right)=k V^{-1}=\frac{k}{V} \\
& \frac{\partial P}{\partial V}=\frac{\partial}{\partial V}\left(k T V^{-1}\right)=k T\left(-V^{-2}\right)=-\frac{k T}{V^{2}}
\end{aligned}
$$

So from Eq. (4),

$$
\begin{aligned}
\Delta P & \approx \frac{\partial P}{\partial T} \Delta T+\frac{\partial P}{\partial V} \Delta V \\
& =\frac{k}{V} \Delta T-\frac{k T}{V^{2}} \Delta V
\end{aligned}
$$

Divide this equation by P to obtain

$$
\begin{aligned}
\frac{\Delta P}{P} & \approx \frac{k}{P V} \Delta T-\frac{k T}{P V^{2}} \Delta V \\
& \left.=\frac{\Delta T}{T}-\frac{\Delta V}{V}, \quad \quad \text { (since } P V=k T\right) .
\end{aligned}
$$

Multiply this equation by 100% to obtain

$$
\begin{aligned}
\frac{\Delta P}{P} \cdot 100 \% & \approx \frac{\Delta T}{T} \cdot 100 \%-\frac{\Delta V}{V} \cdot 100 \% \\
& =(+2 \%)-(-4 \%) \\
& =+6 \%
\end{aligned}
$$

CONCLUSION: Increasing the temperature by 2% and decreasing the volume by 4% will increase the pressure by approximately 6%.

