Recall that we may approximate a function of two variables, z = f(x, y) using a tangent plane approximation. Namely, we may approximate f(x, y) at points (x, y) that are near a point (x_0, y_0) using

$$f(x,y) \approx f(x_0,y_0) + f_x(x_0,y_0) \Delta x + f_y(x_0,y_0) \Delta y, \qquad (1)$$

where $\Delta x = x - x_0$ and $\Delta y = y - y_0$.

This is especially important when we need to approximate a function that is given by tabulated data. In other words, when we do not have a formula for the function.

EXAMPLE: Suppose we have the *apparent temperature* I (in °F) given in tabulated form as a function of the *actual temperature* T (in °F) and the *relative humidity* H.

		% Humidity, H					
		60	65	70	75	80	
	92	105	108	112	115	119	
	94	111	114	118	122	127	
Τ	96	116	121	125	130	135	
	98	123	127	133	138	144	
	100	129	135	141	147	154	

For example, when the actual temperature is $96^{\circ}F$ and the humidity is 70%, then the apparent temperature is

$$I(96, 70) = 125^{\circ} F$$

Use linear approximation (tangent plane approximation) to approximate the apparent temperature I when the actual temperature is 97°F and the humidity is 72%.

From Eq. (1), we may approximate this by

$$I(97,72) \approx I(96,70) + I_T(96,70)\Delta T + I_H(96,70)\Delta H.$$
 (2)

Here,

$$\Delta T = 97 - 96 = +1,$$

$$\Delta H = 72 - 70 = +2.$$

We also need to approximate the partial derivatives $I_T(96, 70)$ and $I_H(96, 70)$.

(next page...)

Prof. K. TeBeest © 2001-14, Kettering University file: approx.tex 11/13/2014

To approximate the partial derivatives $I_T(96,70)$ and $I_H(96,70)$.

		H				
		65	70	75		
	94	114	118	122		
T	96	121	125	130		
	98	127	133	138		

1. $I_T(96,70) = \frac{\partial I}{\partial T}(96,70)$:

This is the partial derivative of I wrt T, so T varies and H acts as a constant. So we use only numbers from the column H = 70. We'll approximate this derivative by calculating the slope between points $(T_1, I_1) = (94, 118)$ and $(T_2, I_2) = (98, 133)$:

$$I_T(96,70) = \frac{\partial I}{\partial T}(96,70) \approx \frac{I_2 - I_1}{T_2 - T_1} = \frac{133 - 118}{98 - 94} = +3.75$$

2. $I_H(96,70) = \frac{\partial I}{\partial H}(96,70)$:

This is the partial derivative of I wrt H, so H varies and T acts as a constant. So we use only numbers from the column T = 96. We'll approximate this derivative by calculating the slope between points $(H_1, I_1) = (65, 121)$ and $(H_2, I_2) = (75, 130)$:

$$I_H(96,70) = \frac{\partial I}{\partial H}(96,70) \approx \frac{I_2 - I_1}{H_2 - H_1} = \frac{130 - 121}{75 - 65} = +0.9$$

So by Eq. (2),

$$I(97,72) \approx I(96,70) + I_T(96,70) \Delta T + I_H(96,70) \Delta H$$

= 125 + (3.75)(1) + (0.9)(2)
= 130.55°F.

CONCLUSION: When the actual temperature is $97^{\circ}F$ and the humidity is 72%, the apparent temperature is approximately 130.55° .

Note 1: Make sure the answer is reasonable. Based on the data in the table, the answer should be between the extreme values 125° F and 133° F. Consequently, our result of 130.55° F is reasonable.

Note 2: This process really uses the tangent plane to function I(T, H) at the point (96, 70) to approximate I(97, 72).

Prof. K. TeBeest © 2001-14, Kettering University file: approx.tex 11/13/2014