Recall that we may approximate a function of two variables, $z=f(x, y)$ using a tangent plane approximation. Namely, we may approximate $f(x, y)$ at points (x, y) that are near a point $\left(x_{0}, y_{0}\right)$ using

$$
\begin{equation*}
f(x, y) \approx f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y \tag{1}
\end{equation*}
$$

where $\quad \Delta x=x-x_{0} \quad$ and $\quad \Delta y=y-y_{0}$.
This is especially important when we need to approximate a function that is given by tabulated data. In other words, when we do not have a formula for the function.

EXAMPLE: Suppose we have the apparent temperature I (in ${ }^{\circ} \mathrm{F}$) given in tabulated form as a function of the actual temperature T (in ${ }^{\circ} \mathrm{F}$) and the relative humidity H.

	$\%$ Humidity, H				
	60	65	$\mathbf{7 0}$	75	80
92	105	108	112	115	119
	T				
94	111	114	$\mathbf{1 1 8}$	122	127
$\mathbf{9 6}$	116	$\mathbf{1 2 1}$	$\mathbf{1 2 5}$	$\mathbf{1 3 0}$	135
98	123	127	$\mathbf{1 3 3}$	138	144
100	129	135	141	147	154

For example, when the actual temperature is $96^{\circ} \mathrm{F}$ and the humidity is 70%, then the apparent temperature is

$$
I(96,70)=125^{\circ} \mathrm{F} .
$$

Use linear approximation (tangent plane approximation) to approximate the apparent temperature I when the actual temperature is $97^{\circ} \mathrm{F}$ and the humidity is 72%.

From Eq. (1), we may approximate this by

$$
\begin{equation*}
I(97,72) \approx I(96,70)+I_{T}(96,70) \Delta T+I_{H}(96,70) \Delta H \tag{2}
\end{equation*}
$$

Here,

$$
\begin{aligned}
\Delta T & =97-96=+1 \\
\Delta H & =72-70=+2
\end{aligned}
$$

We also need to approximate the partial derivatives $I_{T}(96,70)$ and $I_{H}(96,70)$.
(next page...)

To approximate the partial derivatives $I_{T}(96,70)$ and $I_{H}(96,70)$.

	H			
		65	$\mathbf{7 0}$	75
T	$\mathbf{9 4}$	114	$\mathbf{1 1 8}$	122
	$\mathbf{9 6}$	$\mathbf{1 2 1}$	125	$\mathbf{1 3 0}$
	98	127	$\mathbf{1 3 3}$	138

1. $I_{T}(96,70)=\frac{\partial I}{\partial T}(96,70)$:

This is the partial derivative of I wrt T, so T varies and H acts as a constant. So we use only numbers from the column $H=70$. We'll approximate this derivative by calculating the slope between points $\left(T_{1}, I_{1}\right)=(94,118)$ and $\left(T_{2}, I_{2}\right)=(98,133)$:

$$
I_{T}(96,70)=\frac{\partial I}{\partial T}(96,70) \approx \frac{I_{2}-I_{1}}{T_{2}-T_{1}}=\frac{133-118}{98-94}=+3.75
$$

2. $I_{H}(96,70)=\frac{\partial I}{\partial H}(96,70)$:

This is the partial derivative of I wrt H, so H varies and T acts as a constant. So we use only numbers from the column $T=96$. We'll approximate this derivative by calculating the slope between points $\left(H_{1}, I_{1}\right)=(65,121)$ and $\left(H_{2}, I_{2}\right)=(75,130)$:

$$
I_{H}(96,70)=\frac{\partial I}{\partial H}(96,70) \approx \frac{I_{2}-I_{1}}{H_{2}-H_{1}}=\frac{130-121}{75-65}=+0.9 .
$$

So by Eq. (2),

$$
\begin{aligned}
I(97,72) & \approx I(96,70)+I_{T}(96,70) \Delta T+I_{H}(96,70) \Delta H \\
& =125+(3.75)(1)+(0.9)(2) \\
& =130.55^{\circ} \mathrm{F} .
\end{aligned}
$$

CONCLUSION: When the actual temperature is $97^{\circ} \mathrm{F}$ and the humidity is 72%, the apparent temperature is approximately 130.55°.

Note 1: Make sure the answer is reasonable. Based on the data in the table, the answer should be between the extreme values $125^{\circ} \mathrm{F}$ and $133^{\circ} \mathrm{F}$. Consequently, our result of $130.55^{\circ} \mathrm{F}$ is reasonable.

Note 2: This process really uses the tangent plane to function $I(T, H)$ at the point $(96,70)$ to approximate $I(97,72)$.

