Abbreviations and Symbols

As college students you should develop your own shorthand and abbreviation system. Doing so will help you take good notes in college and on the job. This saves time and allows you to focus more on content. These are the abbreviations I will use in class. Many should be self-explanatory.

abs	absolute
add'n	addition
adj	adjacent
alg	algebra (on graded exams, this means an "algebraic error")
arb.	arbitrary
asymp	asymptote
bc or b/c	because
bw or b/w	between
Cart	Cartesian
chg(s)	change(s)
comp(s)	component(s)
const(s)	constant(s)
conv(s)	converge(s), also \rightarrow
coord(s)	coordinate(s)
ctr'd	center, centered
cyl	cylinder, cylindrical as in "cyl coords",
def	definition
dep	depends, dependent
deriv	derivative
diff	difference or differentiate
diff'l	differential like $d x, d y$, etc.
diff't	differentiate or different
dim, dim'l	dimension, dimensional
dist	distance
e.g.	for example (Latin: exempli gratia)
Eq or eqn	equation
equiv	equivalent, also \Leftrightarrow or iff
eval, eval't	evaluate
ftn	function
hyp.	hyperbola, hyperbolic / hypotenuse
ident	identity
i.e.	that is, namely, in other words, (Latin: id est)

iff ind, indep int	if and only if, also \Leftrightarrow independent integral, integrate	
L'	L'Hospital's rule	
LHS	left hand side	
mthd	method	
multiv	multivariate	
no./nos.	number/numbers	
not'n	notation (on graded exams, this denotes incorrect or sloppy notation)	
opp	opposite	
ortho	orthogonal	
par'l	parallel, also \|	
par.	partial (as in par. deriv 三 partial derivative)	
parab	parabola, parabolic	
par, param	parameter, parametric	
perp	perpendicular, also \perp	
proj	projection, project (noun), project (verb)	
$\mathrm{pt}(\mathrm{s})$	point(s)	
Pyth.	Pythagorean	
qty	quantity	
rad	radians or radius or radial (as in rad coords \equiv radial coordinate)	
rect	rectangle, rectangular as in "rect coords"	
RHS	right hand side	
rt	right	
sfc	surface	
soln	solution	
spher	spherical as in "spher coords"	
std	standard	
sub	substitute	
subtr	subtract	
supp	suppose	
symm	symmetric, symmetry	
sys	system	
Thm	theorem	
trig	trigonometric, trigonometry (on graded exams, this denotes trig errors)	
$\operatorname{var}(\mathrm{s})$	variable(s)	
vec(s)	vector(s)	

with respect to

Universal/International Mathematical Symbols

$=$	equals is the word "is" in English	
\rightarrow	approaches or converges to	
\Rightarrow	therefore, implies, leads to. Formerly \therefore	
\Leftrightarrow	equivalent to, same as iff, means identically the same expressions	
\|		parallel, also par'l
\perp	perpendicular, also perp	
三	a mathematical definition, "means"	
ϵ	element of, member of, belongs to	
\subset, \subseteq	subset of	
Δ	difference or change (read "delta")	
∇	gradient derivative operator (read "del" or "grad")	
\times	cross product of two vectors	
\rangle	vector delimiters called angle brackets	
[]	closed interval notation, includes endpoints, sometimes extra parentheses	
()	open interval notation excluding endpts / pt notation / or just parentheses	
1 \|	absolute value of a scalar / magnitude of a vector	
\{ \}	set notation, sometimes used as extra parentheses	
d vs. ∂	in the context of differentiation: d is a total deriv., ∂ is a partial deriv. d and ∂ (read "del") are not the same and cannot be used interchangeably	
R	1-dimensional real number system	
$\mathrm{R}^{2}, \mathrm{R}^{3}$	2- and 3-dimensional real space	

Notes on Symbols: $=\rightarrow \Rightarrow$ and \Leftrightarrow

1. = The equal sign is well understood but often abused. It is the English word "is".
2. \rightarrow Converges to or approaches. It is not the equal sign, nor is it the \Rightarrow symbol.
3. \Rightarrow Therefore, so, then, implies, or "as a consequence". This is the imply symbol.
4. \Leftrightarrow Equivalent. Connects two expressions (statements) that are equivalent or have identical meaning.
Examples:
5. $x=0 \quad x$ is 0 .
6. $x \rightarrow 0 \quad x$ approaches 0 , or x converges to 0 .
7. $2 x-8=0 \Rightarrow x=4$. 2 times x minus 8 is 0 . Therefore x is 4 .
8. Thm: Rain \Rightarrow Clouds. Rain implies clouds. If it's raining, then clouds must be present. In this case, \Leftrightarrow cannot be used because the converse is not always true.
9. Thm: Female \Leftrightarrow Girl. Female and girl are equivalent. I.e., Female \Rightarrow girl AND Girl \Rightarrow female.
10. $P V=m R T \Leftrightarrow P V / T=m R$. These are equivalent statements for an ideal gas. It is incorrect to write $P V=m R T=P V / T=m R \quad$ or $\quad P V=m R T \rightarrow P V / T=m R$.
11. Indicate whether each statement is TRUE or FALSE:
a) $x^{2}=4 \Rightarrow x=2$.

False
b) $x^{2}=4 \Rightarrow x= \pm 2$.
c) $x=2 \Rightarrow x^{2}=4$.

True
d) $x=2 \Leftrightarrow x^{2}=4$.

True
e) $x=2 \rightarrow x^{2}=4$.

False
f) $x=2=x^{2}=4$.

False
False

