MATH-203 Multivariate Calculus

Prof. Kevin TeBeest

Course Learning Objectives:

- 1. Transform between rectangular and polar coordinates in the plane, and transform among rectangular, cylindrical, and spherical coordinates in 3-space.
- 2. Sketch 2-dimensional and 3-dimensional figures in each of these coordinate systems.
- 3. Transform between rectangular and parametric representations of functions, plot and differentiate parametrically represented functions.
- 4. Understand algebraic operations of vectors; be able to use the dot- and cross-products to solve problems of geometry and physics.
- 5. Evaluate and plot multivariate functions.
- 6. Differentiate multivariate functions.
- 7. Locate and evaluate unconstrained and constrained optima.
- 8. Set up and evaluate double and triple integrals in the coordinate systems.
- 9. Use double and triple integrals to find areas, volumes, moments and center of mass.

APPROXIMATE LECTURE SCHEDULE¹

WEEK	SECTIONS
1	10.1 — Parametric Equations
	10.2 — Calculus with Parametric Curves
	10.3 — Polar Coordinates
2	10.4 – Areas in Polar Coordinates
	12.1 – 3-D Coordinate Systems
	12.2 - Vectors
3	12.3 — Dot Product
	12.4 — Cross Product
	12.5 — Lines and Planes in 3-D
4	EXAM 1 (tentatively Monday)
	12.6 – Cylinders
	12.6 — Quadric Surfaces
5	14.1 — Functions of Several Variables
	14.3 — Partial Derivatives
6	14.4 — Tangent Planes and Linear Approximations
	14.5 — The Chain Rule
	14.6 — Directional Derivatives and the Gradient Vector
7	EXAM 2 (tentative Monday)
	14.7 — Maxima and Minima
	14.8 — Lagrange Multipliers 2
8	15.1 — Double Integrals over Rectangles
	15.2 — Iterated Integrals
	15.3 — Double Integrals over General Regions
9	15.4 — Double Integrals in Polar Coordinates
	15.5 — Applications: Moments and Center of Mass
10	EXAM 3 (tentatively Monday)
	15.6 — Triple Integrals in Rectangular Coordinates
	15.7 — Triple Integrals in Cylindrical coordinates
11	15.8 — Triple Integrals in Spherical Coordinates
	FINAL EXAM — scheduled by administration

² Instructor's choice if time permits.