MATH 203

Cross Product of Vectors

Dr. TeBeest

The cross product of vectors \mathbf{a} and \mathbf{b} is defined by

$$\mathbf{a} \times \mathbf{b} \equiv \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}.$$
(1)

The result is a vector $(\mathbf{a} \times \mathbf{b})$ that is perpendicular (orthogonal) to both vectors \mathbf{a} and \mathbf{b} . Furthermore,

- 1. The triplet $\mathbf{a} \rightarrow \mathbf{b} \rightarrow (\mathbf{a} \times \mathbf{b})$ forms a right-handed system.
- 2. The area of the parallelogram determined by vectors \bf{a} and \bf{b} is the magnitude of vector $(\bf{a} \times \bf{b})$, which may be determined by

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta, \qquad (2)$$

where θ , $0 \le \theta \le \pi$, is the smallest angle between vectors \mathbf{a} and \mathbf{b} .

By virtue of Eq. (2), $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ if and only if \mathbf{a} and \mathbf{b} are parallel.

Standard Basis Vectors in \mathbb{R}^3 : The triplet $\mathbf{i} \to \mathbf{j} \to \mathbf{k}$ forms a right-handed basis for \mathbb{R}^3 . Furthermore, any cyclical arrangement *also* forms a right-handed basis for \mathbb{R}^3 , *i.e.*,

$$\mathbf{i}
ightarrow \mathbf{j}
ightarrow \mathbf{k}$$
, $\mathbf{j}
ightarrow \mathbf{k}
ightarrow \mathbf{i}$, $\mathbf{k}
ightarrow \mathbf{i}
ightarrow \mathbf{j}$.

Therefore,

- $\mathbf{i} \times \mathbf{j} = \mathbf{k}$,
- $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, and
- $\mathbf{k} \times \mathbf{i} = \mathbf{j}$.

Noncyclical arrangements do **not** form a right handed basis for \mathbf{R}^3 , *i.e.*,

 $\mathbf{i} \rightarrow \mathbf{k} \rightarrow \mathbf{j}\,, \qquad \mathbf{j} \rightarrow \mathbf{i} \rightarrow \mathbf{k}\,, \qquad \mathbf{k} \rightarrow \mathbf{j} \rightarrow \mathbf{i}\,.$

Therefore,

- $\mathbf{j} \times \mathbf{i} = -\mathbf{k}$,
- $\mathbf{k} \times \mathbf{j} = -\mathbf{i}$, and
- $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$.

Triple Scalar Product: The triple scalar product of vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} is defined by

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \equiv \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$
(3)

Note that the result is a scalar (not a vector).

Among other things, the magnitude of the triple scalar product gives the volume of the parallelopiped determined by vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} :

By virtue of Eq. (4), $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0$ if and only if vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} are co-planar.

Vector Properties: If \mathbf{a} , \mathbf{b} , and \mathbf{c} are vectors and k is a scalar, then

- 1. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$ 2. $k(\mathbf{a} \times \mathbf{b}) = (k\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (k\mathbf{b})$ 3. $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$ 4. $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$ 5. $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$ 6. $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ 7. $\mathbf{a} \times \mathbf{0} = \mathbf{0}$ 8. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$
- 9. nonzero vectors ${\bf a}$ and ${\bf b}$ are parallel if and only if ${\bf a} imes {\bf b} = {\bf 0}$