MATH-102 — Calculus II

Prof. Kevin TeBeest, Ph.D.

Course Learning Objectives:

- 1. Recognize and apply various integral formulas to find anti-derivatives for use in both definite and indefinite integral situations.
- 2. Use change of variable substitutions to convert more complicated functional expressions and their integrals into simpler forms so that the direct formulas of 1 may be applied.
- 3. Know the definition of the Riemann Integral and to acquire a substantial working knowledge of the evaluation and application of definite integrals, including numerical approximations.
- 4. Have a reasonably good intuitive understanding of the relationship between the definite integral and anti-derivatives as given by the Fundamental Theorem.
- 5. Be functionally competent in the evaluation of improper integrals.
- 6. Have a formal understanding of sequences and series and demonstrate a substantial knowledge of computations and related tests for convergence of series and of the algebra and calculus of power series.
- 7. Evaluate integrals using MuPad.

APPROXIMATE LECTURE SCHEDULE ^{1, 2}

Week	Sections
1	Introduction
	App. E $-$ Sigma (summation) Notation
	4.9 — Antiderivatives
2	5.1 — Approximating Areas and Distances (Riemann Sums)
	5.2 — The Definite Integral
	5.3 - Fundamental Theorems of Calculus
3	5.4 — Indefinite Integrals & Net Change
	5.5 - Integration by Substitution
4	EXAM 1 (tentative)
	6.1 - Areas between Curves in the Plane
	6.2 - Volumes by Disks and Washers
5	6.5 - Average (Mean) Value of a Function
	7.1 - Integration by Parts
6	7.2 — Integrating Powers of trig Functions
	7.3 - Integration by Trig Substitution
7	EXAM 2 (tentative)
	7.4 — Integration by Partial Fraction Decomposition (pfd)
	7.7 — Approximate Integration (Trapezoidal Rule) ³
	7.8 — Improper Integrals
8	11.1 - Sequences
	11.2 - Series
	11.3 — The Integral Test and <i>p</i> -series
9	11.5 - Alternating Series
	11.6 — Absolute Convergence and Ratio Test
10	EXAM 3 (tentative)
	11.8 — Power Series
11	11.10 — Taylor Series and Maclaurin Series
	Finish any remaining material
	FINAL EXAM to be scheduled by the Registrar's Office

¹ This schedule is approximate as some sections will take longer to cover than others. You should refer to the "Course Web Site" daily for actual assignments.

² Maple assignments, quizzes, and supplemental application problems will be scattered throughout the material.

³ If time allows.