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________________________________________________________________________________

First load the LinearAlgebra library, and create a square matrix A:

Calculate the determinant of A and its inverse, which we'll call AI. We'll confirm the inverse by 
multiplying A and AI.

________________________________________________________________________________

Define a constant vector b1, and use LinearSolve to solve the system Ax = b1. 
We'll call the solution x1:

To confirm that x1 is the solution, we'll multiply A and x1. We should get the constant vector b1 except 
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for truncation error.

As further confirmation, we'll multiply A-1 and b1. We should get the solution vector x1 except for 
truncation error.

________________________________________________________________________________

Let's now define a slightly different constant vector b2 and solve the system Ax = b2. We'll call the 
solution x2:

To confirm that x2 is the solution, we'll multiply A and x2. We should get the constant vector b2 except 
for truncation error.

As further confirmation, we'll multiply A-1 and b2. We should get the solution vector x2 except for 
truncation error.

________________________________________________________________________________

In the preceding examples, we solved systems  and  where the input vectors b1 and b2 
differ by only one digit in the first component. Compare b1 and b2 again:
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That very small change to the input vector produced a VERY LARGE change in the solution x. 
Compare solutions x1 and x2 again:

________________________________________________________________________________

Why did a very small change to the input vector produce a very large change in the solution? Because 
the coefficient matrix A is ill-conditioned. Recall that a matrix is ill-conditioned if its condition number 
is much larger than 1. To see this, we'll calculate the condition number of A using the infinity norm.

Recall that the condition number of A is defined by   || A ||  || A-1 ||.   Let's verify this:

Let's now calculate the condition number of A using the Frobenius norm.

________________________________________________________________________________


