
A Fault Management Protocol for TTP/C

Juan R. Pimentel Teodoro Sacristan
Kettering University Dept. Ingenieria y Arquitecturas Telematicas
1700 W. Third Ave. Polytechnic University of Madrid

Flint, Michigan Madrid, Spain
USA tsacristan@diatel.upm.es

jpimente@kettering.edu

Abstract – A new fault management protocol that makes
use of native fault tolerant features of TTP/C has been
developed. It can tolerate multiple nodes failures no
matter how close in time and in minimum time. The time
it takes to detect a node failure and to reconfigure the
system is minimum and it is fixed by the TTP/C protocol.
The protocol tolerates that several nodes, including the
active management node, may fail at the same time and
let the spare nodes reconfigure themselves in order to
substitute the failed nodes. The protocol permits that a
replicate node can belong to several FTUs at the same
time. This allows a higher level of dependability of the
system keeping the same number of replicated nodes.
Because all nodes of the system have to send a message at
least once during a cluster cycle, the active management
node knows the state (active, failed) of each node (regular
application nodes, backup management nodes and spare
application nodes).

I. INTRODUCTION

 Recently, there has been a great deal of interest in time
triggered comunication protocols for automotive and
avionics applications. Two examples of time triggered
protocols are TTP/C and FlexRay [4]. In addition to having a
deterministic behavior, these protocols have fault tolerant
features that enables them to operate well even in the
presence of some faults in the communication system or
other components. However, the management of actual
applications in the presence of multiple faults is not
supported by these protocols. Typically, it is up to the
application designers to devise their own way of managing
multiple faults making use of the fault tolerant mechanism
inherent in the protocols. Thus, the procedures for fault
management are ad hoc and often not well analyzed. What is
needed is a common procedure or protocol that could become
part of the time triggered network stack with well known
behavior and services. In this paper, we propose a fault
management protocol that uses native fault tolerant features
of the TTP/C protocol.

The TTP/C protocol
The TTP/C protocol is an integral communication protocol
for time-triggered architectures, designed to support the
interconnection of electronic modules (nodes) of distributed
fault tolerant real-time systems with stringent dependability

requirements. It provides the services required for providing
message transport for systems with predictable latency,
membership service, clock synchronization, blackout
handling, error detection with low latency, redundancy
management and implement these services without extra
messages and with only a small overhead [1]. A TTP/C
network consists of a set of nodes (smallest replaceable unit,
SRU) that are connected by two replicated channels as shown
in figure 1.

Figure 1.- A TTP/C network.

 TTP/C uses time-division multiple access (TDMA) as the
medium access strategy where each node is permitted to
periodically utilize the full transmission capacity of the bus
for some fixed amount of time called a SRU slot. Thus as
long as each node uses only its own statically assigned slot,
collision free access to the bus can be ensured. In TTP/C a
TDMA round is defined as a sequence of SRU slots in which
all member SRUs send at most two frames, one at each
channel, or only one frame on one of the channels.
 A member SRU can be real or virtual. A real member SRU
consists of a SRU and has a SRU slot for each TDMA where
the SRU transmits its messages. A virtual member consists of
a set of SRUs and has a SRU slot for each TDMA round that
is shared among all SRU that belong to the same virtual
member SRU. Only one of them can transmit in a TDMA
round. The duration of a SRU slot of a member SRU is the
same in every TDMA round where the data field can have up
to 16 bytes as maximum. The number of different TDMA
rounds determines the length of a cluster cycle. Figure 2
depicts the cluster cycle of a system consisting of four nodes,
two TDMA rounds with each TDMA having three SRU
slots. Nodes III and IV form a virtual member and they share
the SRU 2 slot. Node III transmits in one TDMA round and
Node IV transmits in the other one of the cluster cycle. The
nodes of the TTP/C network have the structure shown in
Figure 3 [1].

Communication Network

Node IVNode IINode I Node III

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1800

 A TTP/C node consists of a host, a controller and a

input/output interface to the sensor and actuators in the

Figure 2.- Media Access Scheme.

system. The host executes the local real-time application.
The controller operates autonomously with any control signal
from the host and provides reliable real-time message
transmission. The communication network interface (CNI) is
the interface between the host and the controller and allows
to these two subsystems exchange information (application
data, status data, control data). The CNI consists of a
memory area accessed simultaneously by the controller and
host.
Each controller has a personalized message descriptor list
(MEDL) which defines for each possible mode the node can
run, the action the controller has do (send or receive a
message) for each TDMA slot and the address within the
CNI where the controller has to fetch the message to transmit
and the address within the CNI where the controller has to
store the received message. The MEDL is designed off-line
and its content cannot be changed during normal operation.
The controller will let the host know about exceptional

Figure 3.- TTP/C node architecture.

conditions like errors or other asynchronous events through
the TTP/C interrupt line.

Fault Management in TTP/C
Once a node fails, there are currently several ways to
reconfigure a replicated (spare) node to take over the
functions of the one that failed. The following three are
mostly used. The first two are supported directly by the
TTP/C protocol (native methods) whereas the last method
has to be performed by the host.

• Native Real Shadow: A native real shadow has the
same slot and the same membership bit as the SRU
is intends to replace but only of them can be active
at a time. The cluster sees only whether there is an
active node or not, but it cannot see if there are
multiple spares that can take over if the active node
fails.

• Native Multiplex Shadow: Another option is to
implement shadow nodes as multiplexed nodes, so
each of them gets to transmit during the cluster
cycle. Unusual, but it allows each node to see
(within one cycle, not within one round!) how many
of the shadows are functioning. If one of them
actually fails, its transmission is lost in every cycle,
which is not the case with real shadows or active
replicas; so this option is only useful if the shadows
send messages with long validity spans.

• Active Replication: Under active replication, each
redundant node has its own sending slot; thus all
nodes in the cluster can see in every round how
many (if any) spares are currently present.

II. Model

 In the context of the reference architecture of the TTP/C
specification [2], the fault management protocol proposed in
this paper lies in the FTU layer. We classify nodes as
regular application nodes, management nodes, and spare

Node I Node II Node III Node IV

SRU 0 SRU 1 SRU 2

A B C A B D A

A B C A B D A

Cluster Cycle

TDMA round

SRU 2SRU 1SRU 0 SRU 0

Node INode I Node II
C

h
B

C
h

A

TDMA round

T
T

P
/C

 C
on

tr
ol

le
r

T
T

P
/C

 I
nt

er
ru

pt
 L

in
e

TTP/C Bus

DriverDriver

Logical Line Interface

Host Computer

Communication Network Interface (CNI)

TTP/C Control
Data (MEDL)

Protocol
Processor

Bus Guardian

I/O Interface to Controlled Object

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1801

application nodes. The management nodes could be active
or backup. Management nodes will manage the
reconfiguration and reintegration of spare (replicated) nodes
upon failure of active regular nodes. Because management
nodes can also fail, we designate one as being active and the
others as backup. Regular nodes could be normal, failed or
recovered. We consider a system with n regular nodes, m
management nodes, and s spare nodes. In the context of the
TTP/C system, we make use of n regular TDMA slots, 1
management slot, and o spare slots. In the example used in
this paper, n= 7, m= 3, s= 5, and o= 2. Management nodes
transmit on both channels simultaneously. We define a fault
tolerant unit (FTU) as an application subset composed of
several normal, regular application nodes together with
appropriate spare nodes and managed by the management
nodes. The spare nodes share the o spare slots available in
the system. This is in contrast with the FTU concept in the
TTP/C specification where the replicated nodes are defined
for each node rather than an application subset and the
replicated node has its own sending slot. A pre-configured
table is available listing what spare application nodes take
over functions of failed nodes. Spare slots are used by spare
application nodes and management backup nodes. The spare
slots are multiplexed on a TDMA round basis.
We assume that if a null-frame is detected on both channels,
the node associated with the slot in question is considered to
have failed. Management nodes are placed geographically so
that they can sustain some simultaneous faults on both
channels. We further assume that a failure has been reliably
detected by the communication controller. Finally, we
assume that all management communication among
management nodes takes less than 16 bytes, so that it will fit
in one TDMA round.

III. PROTOCOL DESCRIPTION

Management nodes. As noted, there is a set of m
management nodes responsible for managing all spare
application nodes of all FTUs. Only one management node is
active at any time while the others are backup. One can think
of the set of m management nodes constituting a special
management FTU. Thus when the active management node
fails, it will be taken over by one of the management backup
nodes that belongs to the management FTU. The active
management node has one dedicated TDMA slot for
communication. All nodes (regular, spare, and management)
have a static table as shown Table 1, specifying what nodes
can run a specific system application. In addition, the nodes
have a dynamic table such as that in Table 2 indicating
whether the node is up or down, the application it is running,
and their backup (spare) nodes. When the system is working
properly, the active management node, analyzes the possible
failures they can take place in the system and fills the
dynamic table with appropriate backup nodes.

The active management node puts this information on the bus
periodically so that the management backup nodes and spare

application nodes know what they have to do when each
possible failure takes place. If a failure occurs or the contents
of the table is no longer valid, the table is updated and
broadcasted to the system. The active management node
receives from the spare application nodes and the backup
management nodes the list of backup nodes and it checks that
information from every node is not contradictory. If one of
nodes has conflicting information, the active manager node
prepares another list without that node. The backup nodes
(regular and management) run in parallel their protocol state
machines.

System Applications Nodes

M (Manager) 8, 9, 101

A 1
B 2
C 3
D 4, 15, 14
E 5
F 6, 11, 14
G 7, 12, 13

Table 1.- Static table.

Node State Backup node Application

1 Up No backup A
2 Up No backup B
3 Up No backup C
4 Up 15 D
5 Up No backup E
6 Up 14 F
7 Up 12 G
8 Up 9 M (manager)
9 Up No backup ------------

10 Down No backup -------------
11 Down No backup -------------
12 Up No backup -------------
13 Up No backup -------------
14 Up No backup -------------
15 Up No backup -------------

Table 2.- Dynamic table.

The state transition diagram (STD) for the management
nodes is depicted in the figure 4. The states of the diagram
are as follows:

• Initialization: The node initializes the variables and
checks if everything is proper.

1 Nodes are in priority order, the leftmost node has the
highest priority.

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1802

• Blocked: The node does nothing because there was
an unrecoverable failure in the node or in the
system.

• Idle: The system is working well and there is no
failures to manage. The node sends information to
the spare nodes containing information in case there
is a failure.

• Supervision: The node supervises the
reconfiguration of a backup node. It knows the time
it takes to reconfigure a node. It waits this time and
when this time is up, it checks if the reconfiguration
was successful. If it was not successful, it analyzes
if there is another node that can substitute the two
failed nodes, if there is, it supervises such
substitution.. If there is no substitute nodes, it can
not do anything more and sends a global alarm
message.

• Wait: Backup management nodes wait for their turn

to become active in this state.

• Reconfiguration: The node asks for a role change.

Fig. 4. State transition diagram of a management node

Spare nodes
As noted, the spare nodes share a set of o slots. They receive
the list of backup nodes listed in Table 2 sent periodically by
the manager node. After acquiring their slot they send a copy
of the roles they are currently performing. When a regular
node fails, they know what they have to do from Table 2

 Figure 5. State transition diagram for spare node

(i.e., if node 4 fails, only node 15 has to reconfigure). The
state transition diagram for the spare nodes is depicted in
Figure 5. Regular nodes need not do anything special in
terms of the protocol described in this paper.

IV. DETAILED OPERATION

All nodes constantly monitor activity on the bus. When a
failure is detected the active manager node controls the
operation of the remaining manager nodes and the spare
nodes. The active management node sends a complete list of
roles periodically or when a new event is detected. A spare
application node retransmits the list of roles sent by the
manager node to the remaining nodes. If the management
node receives this list and if it is different from its own list,
the active management node knows this node is in error and
it will send a new list of roles. The active management node

waits and monitors that the spare application node
reconfigures to run as the failed node and if the backup fails,
it will try to find an other node to take over the node that
failed first. While the active management node is waiting and
monitoring a reconfiguration of the system after a failure,
other failures can occur and the active manager node will
wait and monitor this new failure.
Handling of Failure Scenarios

• What if a regular node that does not belong to a
FTU fails? It cannot do anything.

• What if a regular node that belongs to a FTU fails?
If there is a spare node that can take over the failed
node role, it will take over that role.

• What if the spare application node itself has failed?
The active management node detects that failure and
it will try to find a second spare application node so
that it can take over the role of the regular node that
failed.

• What if the active management node fails?
The active management node designates which
other management node will take its role when it
fails. When the backup node detects that the active
management node has failed, it will try to take over
the management role. It could have a problem when
the management node fails without designating a
successor. The backup nodes run their own state

3

6

14

2, 16

Initialization

Reconfiguratio
n

Supervision Idle BlockedWait

0
1

7

8
9

10

15

4, 13

5, 11, 12

Initialization

Analysis

Wait

Reconfiguratio
n

3

6

2
0 1

7

8

9

4

5

Regular
node

Blocked

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1803

transition machine as well as that of the active
management node. This way they know the actual
state of the active management node and the content
of its variables so that if they have to substitute the
active management node they know the state where
it has to transit.

• What if the information about the failed node is
incorrect and the node in fact has not failed (it is
actually running)?
A spare node will try to take over its role and it will
reconfigure itself. This will take one or more
TDMA rounds, meanwhile the spare node is
monitoring if the failed node is actually running. If
it is then it gives up the change of role.

• What if a channel fails?
The active management node always transmits in
both channels.

• What if two application nodes fail almost
simultaneously?
This is not a problem as long as the spare nodes
taking over the roles of the failed nodes are
different.

• What if the active management node is broken
down and it cannot start up?
The backup management nodes detect the failure of
the active management node. They know which of
backup nodes will take over the management role
because it is decided off-line.

• What if a regular node and the active management
node fail at the same time?
The substitution is not a problem. Although the
substitute of the failed management node has to
transist through several states, it is always receiving
messages and thus know the precise state of the
system.

• What if the management node fails without
assigning a successor?
The remaining management nodes could try to get
that role but there could be collisions.

• What if the node that has to take over a failed node
is not able to reconfigure correctly?
The active management node supervising the
reconfiguration will ask a second backup node to
take over the role of the failed node (if such backup
node is available). For this situation, it will take 5
TDMA round to take over the role of the failed
node.

Detailed example
The following example illustrates how the spare and backup
management nodes take over the failed nodes when they fail
even in the same TDMA round. The chosen system for the
example is shown in the figure 6 where nodes through 1 to 7
are regular nodes.

Let us assume that management nodes have static tables as
shown in Table 1 whereas application nodes have dynamic
tables as shown in Table 2 and furthermore that node 4 and
node 8 fail at the times depicted in Figure 7. The nodes in the
system detect that nodes 4 and 8 have failed because they did
not transmit any signal on either channel in their time slot.
The spare nodes and the backup manager nodes find out the
successor of the failed nodes. In this example, node 15 is the
substitute of node 4 and node 9 is the substitute of node 8.
Nodes 15 and 9 begin by invalidating their host lifesign field
and then request reconfiguration from its controller in order
to take over the role of the failed nodes. Once the controller
finishes the reconfiguration process nodes 15 and 9 have to
activate the host lifesign field and their controllers will transit
into ready state first and then into active state when they
acquire their new slots. According to the TTP/C specification
the reconfiguration process will take two TDMA rounds.
Node 9 will be the next active management node and
although its controller has to transit through the passive,
configure, passive, ready and active states to complete the
reconfiguration process, it can receive all the information the
rest of nodes are sending while the reconfiguration process
takes place. Therefore node 9 knows the state of each node
and whether a failure occurs.

Fig. 6. Application with 4 FTUs

V. SUMMARY AND CONCLUSIONS

A new fault management protocol that makes use of native
fault tolerant features of TTP/C has been described. It can
tolerate multiple nodes failures no matter how close in time
and in minimum time. The main advantages of the protocol
are that the management nodes need just one TDMA slot to
perform its functions, the FTU’s share some backup nodes
thus reducing the total number of backup nodes require to
achieve a given level of dependability.
The time it takes to detect a node failure and to reconfigure
the system is minimum and it is fixed by the TTP/C protocol.
This is so because before a node fails the nodes know what
they have to do and they start to do it immediately after they
detect a node failure without waiting for commands from the
active management node. The protocol tolerates that several
nodes, including the active management node, fail at the

Node 1 Node 2 Node 3 Node 4 Node 15 Node 6 Node 11

FTU 1
FTU 2

Node 14

Node 5 Node 7 Node 12 Node 13 Node 8 Node 10Node 9

FTU 3 FTU 4

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1804

same time and let the spare nodes reconfigure themselves in
order to substitute the failed nodes.
The protocol permits that a replicate node can belong to
several FTUs at the same time with the only condition that it
has to be able to run the role assigned to each FTU. This
allows a higher level of dependability of the system keeping
the same number of replicated nodes. Because all nodes of
the system have to send a message at least once during a
cluster cycle, the active management node knows the state
(active, failed) of each node (regular application nodes,
backup management nodes and spare nodes). Still another
advantage is the high level of fault management provided.
The disadvantages of the protocol involve the introduction of
management nodes and associated TDMA slots.

V. REFERENCES

[1] H. Kopetz, G. Grunsteidl, “TTP – A protocol for
Fault-Tolerant Real-Time Systems”. IEEE
Computer, pages 14-23, January 1994.

[2] Specification of the TTP/C Protocol. Specification
version 0.5 of 21-Jul-1999. TTTech
Computertechnik AG

[3] Kopetz, H., A. Krüger, R. Hexel, D. Millinger, R.
Nossal, R. Pallierer, and C. Temple, Redundancy
Management in the Time-Triggered Protocol,
Technical. Report 4/1996, Technical University of
Vienna, Vienna, Austria, 1996.

[4] http://www.flexray-group.com

Fig. 7. Example of dynamic reconfiguration

Node 8 fails

Node 4 fails

Node 9 stars lifesign update

Node 15 starts lifesign update

TDMA round

111 1 2 1063 4 98751 2 1063 4 9875 1 21 2 63 752 63 4 15875

Node 9 detects failure,
requests reconfiguration

Node 15 detects failure,
requests reconfiguration

regular application nodes

management slot

spare slot

A B C D E F G M

A B C D E F G M

A B C D E F G M

12

3 15 91 2 6 751 2 63 75 1 2 63 15 9751 2142 63 13751

Node 15 takes
over node 4

Node 9 takes
over node 8

Node 15 is
reconfigured

Node 9 is
reconfigured

A B C D E F G M

A B C E F G

10

Application
message sent

A B C E F G

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1805

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	IECON CD-ROM Help
