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Abstract –We investigate two types of fault tolerant units
(FTU’s) suitable for dependable distributed control systems and
numerically evaluate their reliability and mean time to failure
(MTTF). A simple simulation-based methodology to
numerically evaluate dependability functions of a wide variety
of fault tolerant units is presented. The method is based on
simulation of stochastic Petri Nets. A set of 15 FTU
configurations belonging to five groups is analyzed. Groups 1
and 2 belong to the node oriented category whereas groups 3
through 5 belong to the application oriented category. The
methodology allows a quick and accurate evaluation of
dependability functions of any distributed control system design
in terms of the type of FTU (i.e., node or application), replicas
per group, replicas per FTU, and shared replicas.

Keywords: Distributed control systems, fault tolerance,
dependability, real-time systems, reliability, simulation,
stochastic Petri-Nets.

I. INTRODUCTION

Distributed control systems are becoming important because
of their potential to effectively support the implementation of
complex control systems with stringent requirements
involving fault tolerance and flexibility that will be of
prevalence in the future. One example of this kind of systems
are embedded control systems such as those used in
automotive control for applications such as drive-by-wire
steer-by-wire, brake-by-wire, or in general X-by-wire [1].
Distributed control systems support several applications with
specific services in a high performance fashion. The
advantages of distributed control systems have been
documented in a number of sources. For example, the
advantages of using advanced digital control in automoviles
include increased stability and safety of the vehicle,
improved fuel efficiency, reduced pollution, more
confortable vehicle operation, increased performance, etc.
[5].

Because of their unique requirements, distributed control
systems use specific real time networks and protocols with
the main examples being CAN (controller area network) [3],
TTP/C [4,5] (time triggered protocol), and FlexRay [9].
Whereas CAN uses an event triggered medium access
mechanism, TTP/C uses a time-triggered mechanism. The
medium access mechanism used by FlexRay is mixed, time-
triggered and event triggered. In the above protocols, the
time-triggered mechanisms used are based on the TDMA
(time division multiple access) principle. Perhaps the main
advantage of the TDMA scheme is its deterministic behavior
making it possible to perform exact calculations of message

delay, control system period, worst case execution delay,
jitter, etc.

The design and implementation of networks and protocols
that support distributed control systems is different from the
design and implementation of other non-real time networks
(e.g., Internet based) because of the unique characteristics of
the intended applications. A good design must start with
special attention to the specific application requirements to
produce a set of unambiguous design specifications. Two
important requirements identified as important for distributed
control systems are dependability and flexibility.
Dependability typically involves availability, reliability,
safety, and security. In this paper we are concerned with
reliability evaluation of a set of fault tolerant units defined
from the viewpoint of applications. Carvalho and Portugal
[11] have studied the dependability of fieldbus networks in
general without regard to FTU’s using Markov chains. In the
above referenced paper, the entire network is considered as
the system under study whereas in this paper we consider
applications as the system of interest.

The motivation for our study is the desire to develop a
relatively simple tool to evaluate the dependability attributes
of various fault tolerant designs of distributed control
systems in a relatively easy fashion. The goal of this research
paper is to study the relationships between the level of
reliability obtained in terms of the degree of fault tolerance
offered by various fault tolerant configurations.

II. DISTRIBUTED CONTROL SYSTEMS

As the name implies, distributed control systems involve a
set of control systems implemented in a distributed fashion
using an appropriate communication protocol. A real time
distributed control system is a control system whose
functions are partitioned into separate modules each
implemented in a distributed fashion on separate nodes
interconnected by a real-time computer network. Each node
in the computer network must perform computations in a
bounded amount of time to meet sampling constraints of the
control system. The computing system and the
communication network has a number of features designed to
meet the requirements and constraints of the control system.

A control system is characterized by one or more feedback
control loops, and associated control algorithms, sensors, and
actuators. The various controllers, sensors, and actuators can
reside in different nodes of the communication network and
communicate among one another using the network services.
Thus in a distributed control system the applications involve
controllers, sensing functions, actuation functions, and
communication functions in the context of control loops.



We characterize a distributed control system as one
having:

Multiple control loops
Wide range of activation frequencies or control periods for

each loop
Multiple sensors and actuators
Variables of small size

Each control loop is characterized by a set of controllers, a
set of reference signals, a set of output signals, and a set of
state signals. The controllers are implemented in the host
portion of the nodes of the  communication system. The
various signals are encoded as messages for transmission on
the network. It is further assumed that the control systems
have stable and high performing control algorithms
organized in modules, implemented as tasks with worst case
execution times to meet stringent requirements involving
determinist, dependable, and flexible behavior. In a
traditional control system the functions of sensing, control
computation, and actuation are strictly sequential. In a
distributed control system such functions can be performed
in parallel or in an overlap fashion thus introducing a
sysnchronization problem that must be properly addressed at
the design phase. Perhaps the main impact on the use of a
communication system within a control system is the need of
such synchronization mechanism so that the functions of
sensing, control computation, and actuation are performed
and communicated to the physical locations they are needed
in a sequence and fashion that is in accordance to control
system principles.

One of the main advantages of distributed control systems
is the potential to operate even under the presence of some
faults through the use of redundant units configured as
special fault tolerant units (FTU). This feature is of
tremendous advantage for applications requiring a high level
of safety and reliability (e.g., passenger cars, airplanes, etc.)

III. DEPENDABILITY ISSUES

The notion of dependability involves the reliance of a
system on the quality of services it provides during an
extended interval of time [4]. Important attributes of
dependability include availability, reliability, and
maintainability. Availability is the probability of finding the
system in the operating state at some time into the future,
reliability is the probability of a system staying in the
operating state without failure, and maintainability is the
probability of beign able to repair a system. In the following
we provide more precise definitions of the dependability
attributes of availability, reliability, and maintainability.

Let S = {s i, i ∈ I} be the set of all possible states of a
system. We can divide S into two disjoint subsets Ss and Sf
where Ss denotes a subset of states where the system is
operating sucessfully and Sf where the system has failed.
Thus

   S = Ss U  Sf

Ss = { s i, i ∈ Is} , and

Sf = { s i, i ∈ If}

Fig. 1 depicts the previous definitions. Based on the
previous definitions we are now in a position to provide
precise definitions of the various dependability concepts.

Availability:
A(t) = Pr{s(t) ∈ Ss / s(τ ) ∈ S, τ  ∈ [0,t>}

Reliability:
R(t) = Pr{s(t) ∈ Ss / s(τ ) ∈ Ss, τ  ∈ [0,t>}

Maintainability:
M(t) = Pr{s(t) ∈ Ss / s(τ ) ∈ Sf, τ  ∈ [0,t>}

MTTF (Mean time to failure): 

MTTF = ∫
∞

0
)( dttR

MTTR (Mean time to repair):

MTTR = ∫
∞

−
0

)](1[ dttM

Fig. 1. Failure states (Sf) and success states (Ss) for
dependability calculations.

A. Redundancy for fault tolerance.

Most approaches to fault tolerance rely on extra elements
introduced to detect and recover from faults.These elements
are redundant  in that they are not strictly required for the
system to operate. Care must be taken when introducing
redundant components to ensure that they do not lead to a
less reliable system. A fault tolerant system typically go
through the following phases: error detection, damage
assessment and confinement, error recovery, and fault
treatment. No fault tolerant scheme can start to operate until
the fault has manifested itself as an error, which can
subsequently be detected, thus the need for error detection.
Once an error has been detected, the consequences of that
error must be assessed through damage assessment and
confinement; the longer the time delay between occurrence
and detection, the greater the possibility of system
corruption. The aim of error recovery is to transform the
system into a state where it can continue to provide full, or
degraded, functionality. Finally under fault treatment, errors
are viewed as the symptoms of faults that unless the cause is

failure

repair
Ss Sf



treated, errors may be repeated.

Depending upon the way redundant components are
configured or reconfigured there are two types of
redundancy, static and dynamic redundancy. The scheme
static or masking redundancy is also called active
replication. Under static redundancy several replicas of a
node are active (i.e., they are fully operational)
simultaneusly. The node and its replicas operate in parallel
and their outputs are compared. Redundancy is used to hide
errors and no type of reconfiguration of redundant
components is necessary; the redundant components operate
even when no error exists. Each replica receives a request
from the client and simultaneously produce its result and
send it to the client which can then vote on the received
results. If replicas are fail-silent, then any result can be used
(e.g., the first received).  The main advantage is its fast
response time and its principal disadvantages are that it
requires much processing,  communication and other
resources, and requires some level of replica determinism
[2]. Some examples include TMR (triple modular
redundancy) and N-version programming.

The scheme dynamic redundancy is also called passive
replication. Under dynamic redundancy a software module
is designed to provide detection of errors. It is up to another
module to recover from the errors when detected. The
recovery procedure involves some kind of reconfiguration
and the redundant components are only invoked when an
error is detected. Thus a system with dynamic redundancy
must be able to recover (through reconfiguration) from a
detected error and in the worst case even restart the system.
A system which uses recovery will often save its state at
specific points and when an error is detected the system will
rollback to a saved state. Typically  one processor is the
primary and executes all service requests while other
processors serve as passive backups. In case of failure of the
primary, one of the backups will be chosen to become the
new primary. This process is repeated in case there are
additional backups. If available, a membership service[5]
could be advantageous for implementing dynamic
redundancy schemes. The main advantages of this scheme
are that it consumes less resources when compared with
active replication and replica determinism is not necessary
[2]. Their disadvantages are that the state of the primary must
be distributed among the replicas continuously, backups must
be able to recover their state, and that the primary must be
fail-silent.

B. Fault Tolerant Units.

As the name implies, a FTU is a unit that continues to
operate even in the presence of some faults. The primary
mechanism used by a fault tolerant unit is replication of
software, hardware, information, and time. In this paper, we
consider only dynamic redundancy (i.e., passive replication)
where a normally working node is considered to be a primary
node and the redundant nodes are called the secondary nodes.
We use the terms redundant node, secondary node, replica, or

backup as meaning the same. In addition we are primarily
concerned with hardware replication at the node level in the
context of a communication network. In this context, we can
distinguish two types of FTU’s, node oriented  and
application oriented. The unit of replication in a node
oriented FTU are nodes that are independent from
applications. When the primary node fails only nodes that are
designated replicas of the primary nodes will take over. A
mechanism is needed to allow just one replicated unit to take
over to avoid collisions or contention. Thus, the secondary
nodes are assumed to have similar or identical functionality
of the node they intend to replace. The unit of replication in
an application oriented FTU are also nodes but unlike node
oriented FTU’s, they belong to a common pool of redundant
nodes defined for a specific application. When the primary
node fails only nodes that are designated replicas of the
application to which the failed node belongs will take over.
Figure 2 depicts four node oriented FTU’s where FTU’s 1
and 2 share node 14. In summary, in a node oriented FTU,
backups are used in a node oriented fashion, they replace
specific nodes independent of any application they may
belong. In contrast, in application oriented FTU’s, backups
are used in a application oriented fashion; nodes that belong
ot the same application share a common set of backups. The
main advantage of application oriented FTU’s is that they
save real estate (i.e., backups). Their disadvantages are that
they require enough flexibility of the backups to replace any
node in an application and a fault management scheme is
required in case there are more than one backup [10].

C. FTU Configurations.

Table I shows 5 groups of 15 FTU configurations with
each group having 3 FTU’s denoted by A, B, and C. We
assume that all FTU’s in the same group belong to a common
application. Groups 1 and 2 contain FTU’s that belong to the
node oriented category whereas groups 3 through 5 contain
FTU’s that belong to the application oriented category. For
each FTU, the node with an asterisk denotes the primary
node whereas the remaining nodes are secondary (i.e.,
backup or replica) nodes. For example, for FTU A of group
1, node 11 is the first backup and node 12 is the second
backup. The main thing to notice between the node oriented
category and application oriented category is that  while the
former may share some replicas, the latter have a common
set of replicas shared by all FTU’s in the group. One can see
that the total number of replicas in group 1 is 6 (two per each
FTU) whereas the total number of replicas in group 2 is 3, a
saving of three replicas when compared with group 1. In
summary, table I shows 15 FTU’s belonging to 5 groups (i.e.,
applications) and 3 FTU categories; the number of replicas
per group vary between 1 and 6, the number of replicas per
FTU vary between 1 and 3 and the number of shared replicas
vary between 0 and 3. It can be noticed that there is a
significant saving in the total number of replicas per group of
application oriented FTU’s (i.e., groups 3, 4, and 5) when
compared to node oriented FTU’s (i.e., groups 1 and 2).



Fig. 2. Node oriented FTU’s.

Table I. Distribution of nodes per groups and FTU’s.
G FTU

A
FTU
B

FTU
C

Rpl
per
group

Rpl
per
FTU

Shared
Rpl

1 5*,
11,
12

6*,
13,
14

7*,
15,
16

6 2 None

2 5*,
11,
12

6*,
11,
13

7*,
12,
13

3 2 11, 12,
13

3 5*,
11,
12,
13

6*,
11,
12,
13

7*,
11,
12,
13

3 3 11, 12,
13

4 5*,
11,
12

6*,
11,
12

7*,
11,
12

2 2 11, 12

5 5*,
11

6*,
11

7*,
11

1 1 11

(*) Denotes primary node within an FTU. G: Group, Rpl:
Replica.

D. Dependability performance measures.

In this paper we are interested in the relative comparison
of reliability functions of  FTU configurations with various
degrees of fault tolerance. The degree of fault tolerance will
be determined by the number of backups (i.e., replicas),
whether backups are shared, and how backups are shared
(node oriented or application oriented).

For comparison reasons we review the fundamental
results of the reliability and availability functions for the
simplest case, an FTU with no replicas with and without
repair [8].

We assume a single node per FTU with an exponential
failure density function given by

f(t) = ?e-?t

The reliability function R(t) for such a single node FTU
without repair is

R(t) = e-? t

and the MTTF = 1/?.

IV. MODELS AND EXPERIMENTS

We have chosen stochastic Petri-Nets (SPN) as the
mathematical framework to evaluate the reliability functions.
The advantages of SPN for performance and reliability
analysis of communication networks have been widely
documented in the literature [6,7]. In addition, we have
chosen a SPN simulator as the computational tool to evaluate
the reliability functions. The main advantages of such tool is
that it supports modeling a wide variety of probability
distribution functions and Petri Net extensions (e.g., the test
arc) and that the solution is obtained through simulation thus
allowing the analytical evaluation of any model regardless of
its complexity.

As noted, the reliability function of an FTU is the
probability that the FTU continues to operate given that it is
operational. The event denoting that an FTU continues to
operate is the same as the event that the primary node of the
FTU or any of its backups continue to operate, according to
the error detection and recovery scheme of the fault tolerant
mechanism in question. We have configured a generic Petri-
Net model that follows the structure of Fig. 3 where a token
in the FTU-test place represents the initial operating state of
an FTU. The Petri-Net model has been designed to simulate
an experiment to observe the behavior of the system.
Although the distribution of tokens in the model (i.e., its
marking) represent the state of the primary node and all of its
backups, we are only interested in two behavioral states
indicating whether the FTU under test has failed or not.
Depending upon the distribution of node failures, and the
nature of the fault tolerant mechanism, after a certain
simulated time interval T, the FTU may find itself in either of
two states, a success state (the FTU continues to operate) or a
failure state (the FTU is not able to provide its services). The
interval T is controlled by the timing control block of Fig. 3
and the experiment is repeated N times. In each trial of the
experiment, one FTU is tested (one token leaves the FTU-test
place of Fig. 3) and either of two events happen; it continues
to operate (one token is added to place Ns) or it fails (one
token is added to place Nf). After N trials of the experiment,
the number of tokes in place Ns correspond to the number of
times the FTU under study did not fail (i.e., a success) and
the number of tokes in place Nf correspond to the number of
times the FTU failed. A reliability value for a fixed value of
T is simply the probability of finding the system in place Ns
after a simulated time of T. The reliability function over time
is obtained by varying T.

A. Nodes without repair

This model category corresponds to a fault tolerant
mechanism that involves an error detection and recovery
scheme consisting of the primary node and a number of
secondary nodes where none of the nodes can be repaired

Node 1 Node 2 Node 3 Node 4 Node 15 Node 6 Node 11

FTU 1
FTU 2

Node 14

Node 5 Node 7 Node 12 Node 13 Node 8 Node 10Node 9

FTU 3 FTU 4



after they fail. The degree of fault tolerance offered depends
on the number of backups (i.e., replicas), whether the
backups are shared, and how backups are shared (node
oriented or application oriented). As noted, the reliability
function of an FTU is the probability that the FTU continues
to operate given that it is operational. For the models in this
category, the event denoting that an FTU continues to
operate is the same as the event that the primary node of the
FTU or any of its backups are operating subject to the
constraint that some (if any) backup nodes may be shared
with other FTU’s as shown in Table I.

Fig. 3. Structure of a generic Petri Net model for reliability
calculations.

The Petri Net model for FTU A of group 1 is depicted in
Fig. 4 and corresponds to an FTU with one primary node and
two backup nodes. The places on the top of the figure
represent states indicating when the primary node is active
and when it fails, when the first backup is active and when it
fails, and when the second backup is active and when it fails.
The transitions simulating failures follow exponential
distributions with mean node failure rate of 1 failure per 105

hours (i.e., 1 failure per 11.446 years). The transitions in
black represent instantaneous transitions. The number of
tokens in the places Nf and Ns on the far right represent the
number of failures and successes in N trials of the
experiment where N is the initial number of tokens in place
FTU-test. Places P15 and P16 along with transitions T21 and
T22 represents the timer control block and model a timer that
regulates a time window that controls the length of the
experiment. The model is independent of the actual protocol
used (e.g., CAN, TTP/C, or FlexRay) because of the relative
high values of mean time to failures relative to the timing
parameters of any specific protocol (e.g., TDMA slot time of
TTP/C).

V. RESULTS

The results of the experiments are a set of reliability
functions and the mean time to failure (MTTF) for all FTU
configurations. Because of the symmetry of the FTU
configurations defined in Table I, the reliability of any of the
3 FTU’s per group (i.e., A, B, or C) are the same. Thus it is

only necessary to show five reliability functions
corresponding to each of the five FTU groups of Table I. The
reliability functions of FTU’s in all groups are depicted in
Fig. 5, whereas their corresponding MTTF are listed in Table
II.  As expected, it can be noticed that the reliability
functions of FTU’s with a higher number of backups decay
more slowly when compared with FTU’s with a smaller
number of backups. Likewise, the MTTF of FTU’s with a
certain number of replicas are longer when compared to the
MTTF of FTU’s with a smaller number of replicas.

Fig. 4. Petri Net model corresponding to FTU A, group 1.

Fig. 5. Reliability functions for FTU’s with no repair.

VI. SUMMARY AND CONCLUSIONS

One of the main advantages of distributed control systems
is the potential to operate even under the presence of some
faults through the use of redundant units configured as
special fault tolerant units (FTU). Fault tolerant units are

FTU-test

Ns

Nf
Error Detection and
Recovery Scheme

Timing Control



effective means to improve the dependability of distributed
control systems. A simple method to numerically evaluate
dependability functions of a wide variety of fault tolerant
units has been developed. The method is based on simulation
of timed Petri Nets with extensions such as the test arc. A set
of 15 FTU configurations belonging to two categories has
been analyzed. The degree of fault tolerance is determined by
the number of backups (i.e., replicas), whether the replicas
are shared, and how replicas are shared in each category
(node oriented or application oriented). The reliability
functions improve as the number of  backups increase. The
reliability of FTU’s that share backups do not vary
significantly when compared to the reliability of FTU’s that
do not share backups. The reliability of FTU’s in groups that
have a common set of replicas shared by all FTU’s in the
group do not vary significantly when compared to the
reliability of FTU’s having replicas that are not shared. The
main advantage of FTU’s that share replicas is that real estate
is saved (i.e., less replicas are used) while the level of
dependability is about the same when compared with FTU’s
that do not share replicas. The methodology presented in this
paper allows the evaluation of dependability functions of any
distributed control system design to be performed quickly
and accurately.

Table II. MTTF of Petri Net models.
FTU MTTF, nodes without repair
Group 1 2.59x 105 hours
Group 2 2.15 x 105 hours
Group 3 1.66 x 105 hours
Group 4 1.32 x 105 hours
Group 5 1.07 x 105 hours
No backups 0.76 x 105 hours
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