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Abstract – In this paper we compare the relative
performance of two fault tolerant mechanisms dealing
with repairable and non-repairable components that
have failed. The relative improvement in the reliability
and safety of a system with repairable components is
calculated with respect to the corresponding system
where the components are not repairable. The fault
tolerant systems under study correspond to a flexible
arrangement of  fault tolerant units (FTU’s) suitable
for dependable distributed embedded systems. A simple
simulation-based methodology to numerically evaluate
dependability functions of a wide variety of fault
tolerant units is used. The method is based on
simulation of stochastic Petri Nets. A set of 15 FTU
configurations belonging to five groups is analysed.
The methodology allows a quick and accurate
evaluation of dependability functions of any distributed
embedded system design in terms of the type of FTU
(i.e., node or application), replicas per group, replicas
per FTU, with or without repair functionality, and
shared replicas.
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I. INTRODUCTION

In a previous paper [12], we have presented results of
reliability evaluation of a system composed of a
flexible arrangement of fault tolerant units when
replicas fail without the possibility of being repaired. In
this paper, we extend the results of [12] to include the
situation of a replica being repaired as soon as it fails.

There are several ways to perform the repair
process. If the failure is due to a physical component
failure then the component can be replaced. If the
failure is due to a design error, then appropriate actions
can be effected. For example, a new version of the
control software can be programmed into the ECU’s.
The latter is particularly appropriate to correct the so-
called control failures. Examples of control failures
include [13]:

• A required event that does not occur.
• An undesirable event
• An incorrect sequence of desired events
• Two incompatible events occurring simultaneously
• Timing failures in event sequences
• Exceeding maximum time constraints between

events
• Failing to ensure minimum time constraints

between events

We make the following general assumptions regarding
the system under study: First, to deal with control
failures listed above an improved version of the
software exists, second, we assume no specific way of
performing the repair. The repair could happen on-line
(automatic), via the Internet, or at a service shop. Thus
examples of repair actions include changing a new
microcontroller chip or installing an improved version
of a program.

The motivation for studying systems with
repairable components is that they are important for the
so-called safety critical systems. It is well known that a
system’s reliability and safety can be improved if
redundant components are used. Furthermore, if some
components are repairable after they fail, both the
system’s reliability and safety can be improved even
further. A second motivating factor is that because of
continued advances in memory and programming (e.g.,
bdm, large flash memories) , it is relatively easy to
reprogram a microcontroller and deal with control
failures in this way. A final motivating factor is our
desire to develop a relatively simple tool to evaluate
dependability and safety functions of various fault
tolerant designs of distributed embedded systems in a
relatively easy fashion.

II. SAFETY CRITICAL SYSTEMS

To illustrate some safety and reliability issues of fault
tolerant units in distributed embedded systems we
consider the following example involving a software
architecture for a steer-by-wire system.



Figure 1. Hardware architecture of a steer-by-wire system.

A steer-by-wire system is a complex system involving a
number of sensors, actuators, communication devices,
electronic control units (ECU’s), signal processing and
conditioning devices, etc. The system gets more
complicated if more stringent requirements (e.g., better
reliability and safety) are to be taken into account.
Developing software for such systems is challenging
and the software design process can be simplified if it is
based on an appropriate architecture.. We have
purposely simplified the functionality of actual steer-
by-wire systems to illustrate the architecture and
associated software design issues. A primary design
requirement of the architecture is that of safety and
reliability. The main mechanism used to deal with
safety and reliability is that of redundancy of safety-
critical components. Another mechanism is the
possibility of repair of some failed components.

As depicted in Fig. 1, the hardware architecture
of a steer-by-wire system is made up of a hand-wheel
unit, a road wheel unit, the steer-by-wire controller, and
the redundant CAN communications (CAN1 and
CAN2) [3, 9]. We assume that there is only one sensor
(S1) and one actuator (A1) at the hand-wheel which are
directly wired to both ECU’s that make up the
redundant steer-by-wire controller. We also assume that
an ECU has only one CAN controller thus each ECU
and its corresponding CAN bus controller can be
treated as a single “line replaceable unit” (LRU), (i.e., a
failure of the CAN bus controller is equivalent to a
failure of the corresponding ECU and conversely).  We
further assume that there are redundant sensors and
actuators at the road-wheel unit. Thus it is implied that
there are two redundant microcontrollers (MC3 and
MC4) at the road wheel unit handling the sensing and
actuating functions. The primary assumption in the
redundant configuration is that when one component of
a redundant configuration fails, the other component
will take over the function of the failed component.

Assuming that ECU2 is the operational
(primary) controller, the system operates as follows:
upon a driver command from the steering wheel, the
sensor in the hand wheel will send the corresponding

signal to both ECU’s. The two ECU’s will perform
their functions asynchronously and output their
messages on both CAN buses. However, the road wheel
actuator (A2) will only read from the CAN2 bus to
generate signals for the road-wheel motor. Likewise,
the road-wheel sensor (S2) will use the CAN2 bus to
send actuator feedback information to ECU2 which in
turn will forward the information to the actuator in the
hand-wheel.

Failure modes
From a safety standpoint one can identify a number of
hazardous states (failure modes) and focus the analysis
on each of these states separate from one another. This
is so because the concern is on safety rather than
correctness. That is, a system is safe it is free from
mishaps even if it does not accomplish its mission or
functional objectives [13].

Based on the drive-by-wire system and its
architecture, we can distinguish the following failure
modes:
1. The road-wheels do not respond to a command

from the hand-wheel. (F-FORW)
2. The road-wheels turn by themselves without any

command from the driver. (F-AUT)
3. There is no road feedback to the driver. (F-FDB)

Figure 2 depicts a logic diagram for states of the system
for two failure modes: F-FORW, and F-FDB.
Assuming that each system state x = 1 when the system
(or component) is operational, and x = 0 when it has
failed,

F-FORW = (CAN1 v CAN2) ^ ((ECU1 v
ECU2)^(MC3vMC4)) ^ (S1 ^ A2)

One of the main advantages of distributed embedded
systems is the potential to operate even under the
presence of some faults through the use of redundant
units configured as special fault tolerant units (FTU).
This feature is of tremendous advantage for
applications requiring a high level of safety and
reliability (e.g., passenger cars, airplanes, etc.) [1, 2, 5].
In figure 2, CAN1 and CAN 2 constitute a fault tolerant
unit. Likewise, ECU1 and ECU2 constitute another
fault tolerant units. More complex fault tolerant units
are discussed in the next section. It is important to note
that the assumptions made to illustrate the steer-by-wire
architecture are for the purpose of explanation only.
More detailed assumptions of the model used and
system under study are made in the sections that follow.
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Figure 2. Logic diagrams corresponding to two failure
modes of the steer-by-wire architecture.

III. RELIABILITY AND SAFETY ISSUES

The notion of dependability involves the reliance of a
system on the quality of services it provides during an
extended interval of time [4]. Important attributes of
dependability include reliability, and safety. Reliability
is the probability of a system staying in the operating
state without failure, and safety is the probability of a
system staying in safe states despite component
failures. In the following we provide more precise
definitions of these functions.

Let S = {si, i ∈ I} be the set of all possible
states of a system. We can divide S into two disjoint
subsets Ss and Sf where Ss denotes a subset of states
where the system is operating sucessfully and Sf where
the system has failed. Thus

S = Ss U  Sf

Ss = { si, i ∈ Is} , and  Sf = { si, i ∈ If}

Based on the previous definitions we provide
the following definitions.

Reliability:
R(t) = Pr{s(t) ∈ Ss / s(τ ) ∈ Ss, τ  ∈ [0,t>}

MTTF (Mean time to failure): MTTF =∫
∞

0
)( dttR

To define safety, we decompose Sf into two states B
and C. The original set of sates Ss is renamed A.

Safety:
      S(t) = Pr{s(t) ∈ (A,B)/ s(τ ) ∈(A,B), τ  ∈ [0,t>}

From the reliability and safety definitions we can see
that the evaluation of the reliability or safety functions
are similar, differing only in the underlying states. In
[11], this approach has been used to evaluate the
dependability of fieldbus networks.

A. Redundancy for safety and reliability.  Most
approaches to fault tolerance rely on extra elements
introduced to detect and recover from faults.These
elements are redundant in that they are not strictly
required for the system to operate. Care must be taken
when introducing redundant components to ensure that
they do not lead to a less reliable system. A fault
tolerant system typically go through the following
phases: error detection, damage assessment and
confinement, error recovery, and fault treatment. No
fault tolerant scheme can start to operate until the fault
has manifested itself as an error, which can
subsequently be detected, thus the need for error
detection. Once an error has been detected, the
consequences of that error must be assessed through
damage assessment and confinement; the longer the
time delay between occurrence and detection, the
greater the possibility of system corruption. The aim of
error recovery is to transform the system into a state
where it can continue to provide full, or degraded,
functionality. Finally under fault treatment, errors are
viewed as the symptoms of faults that unless the cause
is treated, errors may be repeated.

Fig. 3. Node oriented FTU’s.

B. Fault Tolerant Units. As the name implies, a FTU
is a unit that continues to operate even in the presence
of some faults. The primary mechanism used by a fault
tolerant unit is replication of software, hardware,
information, and time. In this paper, we consider only
dynamic redundancy (i.e., passive replication) where a
normally working node is considered to be a primary
node and the redundant nodes are called the secondary
nodes. We use the terms redundant node, secondary
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node, replica, or backup as meaning the same. In
addition we are primarily concerned with hardware
replication at the node level in the context of a
communication network. In this context, we can
distinguish two types of FTU’s, node oriented and
application oriented. The unit of replication in a node
oriented FTU are nodes that are independent from
applications. When the primary node fails only nodes
that are designated replicas of the primary nodes will
take over. A mechanism is needed to allow just one
replicated unit to take over to avoid collisions or
contention. Thus, the secondary nodes are assumed to
have similar or identical functionality of the node they
intend to replace. The unit of replication in an
application oriented FTU are also nodes but unlike
node oriented FTU’s, they belong to a common pool of
redundant nodes defined for a specific application.
When the primary node fails only nodes that are
designated replicas of the application to which the
failed node belongs will take over. Figure 3 depicts four
node oriented FTU’s where FTU’s 1 and 2 share node
14

C. FTU Configurations. Table I shows 5 groups of 15
FTU configurations with each group having 3 FTU’s
denoted by A, B, and C. We assume that all FTU’s in
the same group belong to a common application.
Groups 1 and 2 contain FTU’s that belong to the node
oriented category whereas groups 3 through 5 contain
FTU’s that belong to the application oriented category.
For each FTU, the node with an asterisk denotes the
primary node whereas the remaining nodes are
secondary (i.e., backup or replica) nodes. For example,
for FTU A of group 1, node 11 is the first backup and
node 12 is the second backup. The main thing to notice
between the node oriented category and application
oriented category is that  while the former may share
some replicas, the latter have a common set of replicas
shared by all FTU’s in the group. One can see that the
total number of replicas in group 1 is 6 (two per each
FTU) whereas the total number of replicas in group 2 is
3, a saving of three replicas when compared with group
1. In summary, table I shows 15 FTU’s belonging to 5
groups (i.e., applications) and 3 FTU categories; the
number of replicas per group vary between 1 and 6, the
number of replicas per FTU vary between 1 and 3 and
the number of shared replicas vary between 0 and 3. It
can be noticed that there is a significant saving in the
total number of replicas per group of application
oriented FTU’s (i.e., groups 3, 4, and 5) when
compared to node oriented FTU’s (i.e., groups 1 and 2).

IV. MODELS AND EXPERIMENTS

We have chosen stochastic Petri-Nets (SPN) as the
mathematical framework to evaluate the reliability
functions. The advantages of SPN for performance and
reliability analysis of communication networks have
been widely documented in the literature [6,7]. In
addition, we have chosen a SPN simulator as the
computational tool to evaluate the reliability functions.
The main advantages of such tool is that it supports
modeling a wide variety of probability distribution
functions and Petri Net extensions (e.g., the test arc)
and that the solution is obtained through simulation
thus allowing the analytical evaluation of any model
regardless of its complexity.

Table I. Distribution of nodes per groups and FTU’s
Gr FTU A FTU B

FTU C
RPG RPF SR

1
5*, 11,
12

6*, 13,
14

7*, 15,
16

6 2 None

2 5*, 11,
12

6*, 11,
13

7*, 12,
13

3 2 11,
12, 13

3 5*, 11,
12, 13

6*, 11,
12, 13

7*, 11,
12, 13

3 3 11,
12, 13

4 5*, 11,
12

6*, 11,
12

7*, 11,
12

2 2 11, 12

5 5*, 11 6*, 11 7*, 11 1 1 11
(*) Denotes primary node within an FTU. Gr: Group, RPG:
Replicas per group, RPF: Replicas per FTU, SR: Shared
replicas.

As noted, the reliability function of an FTU is the
probability that the FTU continues to operate given that it is
operational. The event denoting that an FTU continues to
operate is the same as the event that the primary node of the
FTU or any of its backups continue to operate, according to
the error detection and recovery scheme of the fault tolerant
mechanism in question. We have configured a generic Petri-
Net model that follows the structure of Fig. 4 where a token
in the FTU-test place represents the initial operating state of
an FTU. The Petri-Net model has been designed to simulate
an experiment to observe the behavior of the system.
Although the distribution of tokens in the model (i.e., its
marking) represent the state of the primary node and all of its
backups, we are only interested in two behavioral states
indicating whether the FTU under test has failed or not.
Depending upon the distribution of node failures, and the
nature of the fault tolerant mechanism, after a certain
simulated time interval T, the FTU may find itself in either of
two states, a success state (the FTU continues to operate) or a
failure state (the FTU is not able to provide its services). The
interval T is controlled by the timing control block of Fig. 4
and the experiment is repeated N times. In each trial of the
experiment, one FTU is tested (one token leaves the FTU-test
place of Fig. 4) and either of two events happen; it continues
to operate (one token is added to place Ns) or it fails (one
token is added to place Nf). After N trials of the experiment,



the number of tokes in place Ns correspond to the number of
times the FTU under study did not fail (i.e., a success) and
the number of tokes in place Nf correspond to the number of
times the FTU failed. A reliability value for a fixed value of
T is simply the probability of finding the system in place Ns
after a simulated time of T. The reliability function over time
is obtained by varying T [8].

Nodes with  repair
The model category correspond to a fault tolerant

mechanism that involves an error detection and recovery
scheme consisting of the primary node and a number of
secondary nodes where only the first node that fails can be
repaired. Once the primary node fails, we assume that the
repair process will start immediately and it will also complete
immediately. In most real systems, a repair process
approximately follows a uniform distribution function with a
uniform probability density function (pdf) in the interval [ra,
rb]. For highly dynamic systems such as distributed
embedded systems, the uniform pdf models repair processes
more accurately than the traditional assumption of
exponential repair density functions because the repair time
is a fairly fixed value that includes a small variation.
However, the values ra, and rb are so small as compared with
the period between failures that they do not have any effect
on the models.

Fig. 4. Structure of a generic Petri Net model for
reliability calculations

The degree of fault tolerance offered depends on the
number of backups (i.e., replicas), whether the backups are
shared, whether failed components can be repaired, and how
backups are shared (node oriented or application oriented).
As noted, the reliability function of an FTU is the probability
that the FTU continues to operate given that it is operational.
For the models in this category, the event denoting that an
FTU continues to operate is the same as the event that the
primary node of the FTU, or any of its backups, or the
repaired node is operating subject to the constraint that some
(if any) backup nodes may be shared with other FTU’s as
shown in Table I. We assume that nodes can be repaired soon
after they fail but before the system fails completely.

The Petri Net model for FTU A of group 1 is

depicted in Fig. 5 and corresponds to an FTU with one
primary node and two backup nodes. The places on the
very top of the figure (P-to-be-repaired, Prim-repaired,
and P26) models the repair of the “Primary” node. The
places in the intermediate section of the figure represent
states indicating when the primary node is active and
when it fails (Prim-failed), when the first backup is
active and when it fails (bk-1-failed), and when the
second backup is active and when it fails (bk-2-failed).
The transitions simulating failures follow exponential
distributions with mean node failure rate of 1 failure
per 105 hours (i.e., 1 failure per 11.446 years). The
transitions in black represent instantaneous transitions
and the remaining transitions represent timed
transitions. The number of tokens in the places Nf and
Ns on the far right represent the number of failures and
successes in N trials of the experiment where N is the
initial number of tokens in place FTU-test. Places P15
and P16 along with transitions T21 and T22 represents
the timer control block and model a timer that regulates
a time window that controls the length of the
experiment. The model is independent of the actual
protocol used (e.g., CAN, TTP/C, or FlexRay) because
of the relative high values of mean time to failures
relative to the timing parameters of any specific
protocol (e.g., TDMA slot time of TTP/C).

Fig. 5. Petri Net model corresponding to FTU A, group 1.

V. RESULTS

The results of the experiments are a set of reliability
functions and the mean time to failure (MTTF) for all FTU
configurations for models in both categories: nodes without
repair and nodes with repair. In [12], the reliability functions
and associated MTTF for nodes without repair were
evaluated. For comparison purposes, Fig. 6 depicts the
reliability functions of groups 1 and 5 for both cases, with
repair and without repair. It can be noticed that the difference
between MTTF values of groups with repair and without
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repair (the area under the corresponding curves) is higher as
the number of backups increases.  For example, the MTTF of
group 1 increases from 2.59x 105 hours (without repair) to
3.55 x 105 hours (with repair).

VI. SUMMARY AND CONCLUSIONS

One of the main advantages of distributed
embedded systems is the potential to operate even under the
presence of some faults through the use of redundant units
configured as special fault tolerant units (FTU). Fault tolerant
units are effective means to improve the safety and reliability
of distributed embedded systems. A simple method to
numerically evaluate safety-reliability functions of a wide
variety of fault tolerant units has been developed. The
method is based on simulation of timed Petri Nets with
extensions such as the test arc. A set of 15 FTU
configurations belonging to two categories has been
analyzed. The degree of fault tolerance is determined by the
number of backups (i.e., replicas), whether the replicas are
shared, how replicas are shared in each category (node
oriented or application oriented), and whether automatic
repair of failed nodes is considered. The MTTF of FTU’s
with repairable nodes increase with respect ot FTU’s having
nodes without repair. Thus the reliability and safety of a
system with repairable components is better than the
corresponding system where the components are not
repairable. The methodology presented in this paper allows
the evaluation of safety-reliability functions of any
distributed embedded system design to be performed quickly
and accurately.
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