
2006-01-1026

Design of a Safety-Critical Drive-By-Wire System Using
FlexCAN

Manuele Bertoluzzo, Giuseppe Buja
University of Padova, Department of Electrical Engineering

Juan R. Pimentel
Kettering University, Department of Electrical and Computer Engineering

Copyright © 2005 SAE International

ABSTRACT

This paper describes the design of a drive-by-wire system
for a commercial lift truck using the FlexCAN
communication architecture. FlexCAN is a recently
developed architecture based on the CAN protocol to
support deterministic and safety-critical applications. The
main features of FlexCAN are its simplicity and ready
implementation based on COTS CAN components. The
main steer-by-wire design tasks are listed and a
description of how each of the tasks was accomplished
using the FlexCAN architecture is detailed. A performance
evaluation of the design is included.

INTRODUCTION

It is the objective of this paper to address the
dependability requirements of the drive-by-wire system of
a lift truck and its implementation using the FlexCAN
architecture [1]. Drive-by-Wire (DbW) systems are all-
electric systems, which are expected to replace the
mechanical/hydraulic means that transmit and actuate the
driving commands in a car in a few years [2]. The
objective is the improvement of the overall automotive
performance. As a matter of fact, the DbW systems
enhance the safety of the vehicle occupants. This is done
by making the conditioning of the driving commands
feasible, by allowing more accurate maneuvers thanks to
the use of closed-loop controlled electric drives, and by
increasing the car’s efficiency, since they utilize electrical
equipment with much less losses.

Currently there is a thriving activity designing and
developing DbW systems. The main issues are the
assessment of suitable architectures and the validation of
their dependability, especially when the DbW systems are
employed for executing safety-critical commands such as
steering and braking [3].

The application of DbW systems in the industrial vehicles
(e.g., lift trucks) has not been investigated as deeply as in
the automobile sector even if they pose less stringent
demands in terms of safety and technical specifications.
This because the industrial vehicles typically are driven by
qualified workers, have a cruising speed much slower than
a car and operate in enclosed spaces such as yards or
storehouses.

In this paper a DbW system responsible for the steering
and acceleration maneuvers of a commercial lift truck is
presented. Attention is focused on the control architecture
of the DbW system and the design of the communication
network. The in-progress activity to validate the design is
also illustrated. In detail, the paper is organized as
follows. The Drive-By-Wire System section describes the
trial lift truck used in the study, discusses the safety
requirements for the vehicle and derives the architecture of
the DbW system. The section on the FlexCAN
architecture analyzes the characteristics of the
communication architecture to be used, namely FlexCAN.
The FlexCAN based DbW System section explains the
implementation of the DbW system using FlexCAN. The
next section evaluates the dependability and
communication performance of the designed DbW
system. The last section concludes the paper.

THE DRIVE-BY-WIRE SYSTEM

A. LIFT TRUCK DESCRIPTION

The lift truck shown in Fig.1 is considered in the paper.
The truck, manufactured by Cesab S.p.A., has four
wheels, is fed by a 48 Volt battery and is equipped with
hydraulic circuitries for steering, hoisting and low-speed
braking, and with an electric system for traction. The
steering wheels are the rear ones. They are directed by
the ram of a cylinder that is inserted in a hydraulic circuit
pressurized by an electric motor. The cylinder operates
parallel to the floor in the same way as the transmission
bar of a car. The mast is also moved hydraulically and the

associated circuit shares the pressurizing motor with the
steering circuit. The traction wheels are the front ones and
are powered by two induction motor drives, one for each
wheel.

Figure 1. The lift truck.

Input devices for the driving commands are the hand
wheel, which mounts a distribution valve feeding the
steering circuit, two accelerator pedals – one to go
forward and the other to go backward – and a brake pedal,
which engages its own hydraulic circuit and is employed
for the accurate positioning of the truck at low speeds. A
potentiometer located on the stub axle of one of the rear
wheels detects the steering angle of that wheel. It is
entered into and processed by the main control system of
the two traction drives to separately adjust the speed of
the motors in order that the wheels behave as though they
were connected to a driving shaft with a differential gear.

An electronic board, called an IOboard, acquires the
speed command from the accelerator pedals, the hoisting
commands from three control levers situated in the
cockpit and on/off-type commands from push buttons
placed on the dashboard. Another electronic board, called
a Dboard, switches the dashboard indicators. The
IOboard, the Dboard and the traction drives are connected
at a bit rate of 125 Kbit/s via a CAN network with a
proprietary application protocol. The network transmits i)
the IOboard input commands to the traction drives, the
hoisting motor and the Dboard, and ii) the actual values of
the steering angle and the cruising speed together with
the status of the traction drives to the Dboard.

B .LIFT TRUCK DBW ARCHITECTURE

The DbW system under design must be in charge of
executing the steering and speed commands of the lift
truck [4]. Its architecture is strictly related to the safety
requirements for the vehicle, which are a fault-tolerant
behavior for both acquisition and actuation of the driving
commands [5], [6]. This means that, regardless of the
fault, the system must maintain the capabilities of
developing steering and tractive forces in the actuation
chain, and the capabilities of entering and transmitting the
command signals in the input chain. The fault-tolerant
requirement is met by duplicating the devices of the DbW

system. To restrict the overall size of the electric drives,
an actuating operation with degraded performance is
accepted. To recognize for sure the occurrence and the
source of a fault, both the device redundancies and
plausibility checks of the variables are exploited. The
arranged DbW system has the architecture of Fig.2. Its
installation requires some modifications to the original
truck, with the addition of sensors, electric drives and
electronic units, where the latter ones are microprocessor-
based boards with embedded devices for handling the
sensors and the electric drives and for carrying out the
communication services, including the bus transmission.

Figure.2. DbW system architecture.

The hand wheel and accelerator pedals each have two
sensors for the duplicated sensing of the commands,
which are then entered into the Handwheel Unit and the
Pedal Unit, respectively. Besides acquisition of the
commands, the input units check the sensor integrity and
send the acquired data on the bus of the DbW network.

The steering cylinder is replaced by two electric drives,
with the motors coupled to the ball screw linking the rear
wheels. Each drive is sized to develop half the power
needed by the steering maneuver in steady state and full
power during transients. Therefore if one drive fails, the
other one maintains the steering of the truck for a little
while and then moves the truck in a downgraded manner.
An equal situation occurs for the traction drives.

Steering Units #1 and #2 control the two steering drives
while Traction Units #1 and #2 do the same with the
traction drives. The latter units differ from the original ones
in the communication interface, which is now
interconnected to the DbW network rather than to the
CAN network. The actuation units receive the steering
angle and speed references via the DbW network and
locally close the control loops using the feedbacks
provided by the respective sensors. Moreover, the units
transmit the feedback and the status of the drives on the
bus. A low-power drive, fitted in the hand wheel column
and controlled by the Force Reaction Unit, lets the driver
feel the effort taken by the steering maneuver [7].

The Central Unit processes all the messages coming from
the other units and manages the vehicle. It conditions the

driving commands sent by the input units before
generating the references for the actuation units.
Conditioning depends on the traveling situations so that,
for example, if either a tight swerve is required or the load
is lifted up, the speed is reduced to avoid overturning the
vehicle. The Central Unit, moreover, brings the vehicle to a
safe status whenever a fault is detected. All the units of
the DbW system are programmed in such a way that they
block any message transmission when faults are
detected. This helps the healthy units in recognizing the
fault and prepares them to receive the commands
scheduled in the presence of a fault from the Central Unit.
Furthermore, the Central Unit works as a gateway
between the DbW network and the pre-existing CAN
network, which is utilized to its extent of connecting the
Dashboard Unit with the hoisting system (not shown in
Fig.2), the push buttons and the indicators.

C. DBW NETWORK SPECIFICATIONS

The specifications for the DbW network are expressed in
terms of the following parameters: information exchanged
between the devices, number of bytes transmitting the
information, level of reliability of the communication tasks,
and update rate of the data. Eight kinds of messages are
transmitted on the DbW network: speed command
(SpeedCom), speed reference (SpeedRef), actual speed
and status of the traction drives (TracStatus), steering
angle command (SteerCom), steering angle reference
(SteerRef), actual steering angle and status of the
steering drives (SteerStatus), force feedback reference
(ForceRef), and data exchanged with the CAN network
through the gateway (CANMsg).

The SpeedCom message originates from the Pedal Unit
and is conditioned by the Central Unit to obtain the
SpeedRef message sent to the Traction Units. Both the
messages use two bytes to encode the sign and
magnitude of the speed. Before conditioning, the
magnitude is proportional to the position of the accelerator
pedal while the sign depends on which of the two pedals
is pressed. Two TracStatus messages are sent on the
network, one for each Traction Unit. Every message
contains the actual values of speed, current and
temperature of a traction drive, with the first two variables
coded in two bytes and the third one in one byte. The
SteerCom message contains the steering command
coded in two bytes. It originates from the Handwheel Unit
and is conditioned by the Central Unit to obtain the
SteerRef message sent to the Steering Units. Each
Steering Unit, in turn, sends a SteerStatus message with
the same type of data as the TracStatus messages but
pertinent to the steering drives. In addition to handling the
vehicle, the Central Unit extracts the commanded and
actual values of the steering angle from the SteerCom and
SteerStatus messages to calculate the force reaction
reference and transmits it to the Force Reaction Unit with
the ForceRef message.

For the communication tasks to be adequately reliable, all
the messages transmit two additional data bytes. The first
byte codes the status of the transmitting unit and the
occurrence of an alarm, if any. The second byte is a sort
of echo computed as a function of the last data received
and sent on the bus with the next message to notify the
transmitter of the correctness of the received message.
The length of the data is hence eight bytes at most, so
that protocols with data frames having a short data field
are conveniently adopted for the application. The update
rate of the data is chosen to be 10 ms, a value which is
correlated to the rated speed of the truck and is dictated
by the need of not impairing its control.

There are three communication network protocols most
likely to be used in DbW systems: FlexRay, TTCAN, and
FlexCAN. FlexRay is a time-triggered protocol specifically
devised to meet the DbW requirements of determinism,
fault tolerance and reliability [8]. It utilizes the Time
Division Multiple Access (TDMA) method to access the
bus. With TDMA the nodes of a network access the bus
at fixed time instants and occupy it for fixed time intervals,
commonly termed time slots. This avoids collisions
among the messages and the consequent retransmission
delays. For non-scheduled messages the protocol
accommodates for a fixed-length event-triggered segment
within the communication cycle. FlexRay also comes with
built-in duplication of the bus. TTCAN is an evolution of
CAN, a protocol developed by Bosch at the end of the
80’s with the aim of providing a suitable solution for the
data exchange between devices on board the vehicle [9].
Like FlexRay, TTCAN utilizes both time-triggered and
event-triggered transmissions but, unlike FlexRay, it
supports limited fault-tolerance and reliability
requirements (e.g., it does not have bus duplication).
When redundant transmissions are required, every node
must be built up with two or more TTCAN controllers and
application software must be arranged for handling
replication. Like FlexRay, the FlexCAN [10-12]
architecture has been designed to meet requirements of
determinism, fault tolerance and reliability, and this has
been achieved by adding extra features to CAN. In this
paper the FlexCAN architecture is utilized to design the
DbW system of the lift truck.

THE FLEXCAN ARCHITECTURE

The goal of the FlexCAN architecture is to provide
additional real-time and dependable capabilities to the
CAN protocol. This is accomplished by incorporating an
additional layer on top of CAN, just as TCP provides
reliable-data transfer as an additional layer on top of IP
which provides unreliable data transfer. The main features
of the FlexCAN architecture are: replicated architecture,
support for time-domain composability, replica
synchronization, replication management, and
enforcement of fail-silent behavior.

As depicted in Fig. 3, the FlexCAN architecture can
incorporate several replicated channels and several
replicated nodes (in addition to normally non-replicated
ones) in a flexible fashion. A node and all of its replicas is
called an FTU (fault tolerant unit), but not all nodes in a
network need to be replicated. Time-domain composability
has been a major liability of CAN-based networks for
safety-critical applications. There have been several
proposals to overcome this limitation such as TTCAN and
FTT-CAN, which basically adopt a time-triggered
transmission scheme at a high level and still use CAN at
the lower level. FlexCAN also adopts the time-triggered
paradigm by using reference messages generated by any
data source (i.e., from the application). The interval
between reference messages is called the basic cycle,
and this interval is further divided into a number of sub-
cycles or sub-windows. Whereas TTCAN uses a
distributed clock synchronization mechanism to
implement the time-triggered scheme, FTT-CAN uses a
master node to generate the reference messages.
FlexCAN on the other hand relies on node-replication to
support reference messages on a distributed basis
without the need of synchronized clocks. The basic
cycles, together with their sub-cycles, not only help with
time-domain composability but also help to synchronize
replicated nodes and channels, and to enforce fail-silent
behavior, particularly using bus guardians. FlexCAN
assumes that all messages are periodic, with the period
equal to the basic cycle. Periodic messages with different
periods can also be handled, but the details are not
provided here.

Figure 3. The FlexCAN architecture.

Providing message synchronization on replicated
channels is simple, as each node simply sends the same
message on all replicated channels in an atomic fashion
(i.e., without interruption). However providing message
synchronization on replicated nodes is not trivial, and thus
a special protocol known as SafeCAN is provided to
handle node replication management. There are a number
of fault-tolerant features in SafeCAN that are similar to the
token bus protocol (IEEE 802.4). The token concept in
802.4 is used to grant a certain node access to the bus
on a global and fair basis where token rotation and

inconsistencies are handled using a node hardware
address. In a similar fashion, SafeCAN grants a certain
replica node access to the bus on a local and unfair basis
where token rotation and inconsistencies are handled
using a node hardware address. SafeCAN is a local and
unfair protocol in that its universe of discourse are the
nodes in a particular FTU, and it is not important that the
token is shared by all nodes in the FTU. In this sense, it
is a greedy protocol in that the node with the token (called
the primary node) will not release it until it fails. The
replacement of the primary node (called the secondary
node) is always ready (provided the hardware is available).
In terms of the type of redundancy algorithm used,
FlexCAN uses a combination of static and dynamic
redundancy. The SafeCAN protocol assumes that nodes
are fail silent. To enforce such a fault model, FlexCAN
uses a similar technique proposed in the FTT-CAN
protocol to remove the message from its transmit buffer
after a certain interval called the transmission attempt
window (TAW) and also by using a special purpose bus
guardian. If an additional bus fault tolerant mechanism is
needed, the recently developed ReCANcentrate, a
replicated CAN star topology, can be used in the
FlexCAN architecture.

In the following, additional details of the time-triggered
feature are given. The basic cycle Tc is divided into Q sub-
cycles each of equal length Tsc. Regardless of their node
location there can be up to P messages allocated per
sub-cycle. Thus the maximum number of messages in the
network is PxQ. The goal is to have all messages in a
sub-cycle transmitted before the next sub-cycle. This is
based on a principle of time independence. Clearly, if this
is enforced there will be no message queuing from one
sub-cycle to the next and therefore from cycle to cycle.
This peculiar message allocation scheme is the one
adopted by FlexCAN. All allocations are done in an off-line
fashion, just like TTCAN. Unlike TTCAN, this scheme
does not require clock synchronization across all nodes,
but simply requires management of timers with a
minimum resolution of about 0.2 ms.

Just like TTCAN, to implement the time-triggered scheme,
FlexCAN requires a synchronization message to explicitly
mark the beginning of each cycle. But unlike TTCAN,
there is no need for node clocks to be synchronized.
Instead, FlexCAN relies on timers to divide the entire
cycle into Q (e.g., 4) sub-cycles. TTCAN requires clocks
to be synchronized because the exclusive windows are
allocated to a single message. On the other hand, in
FlexCAN the sub-windows are allocated to a group of
messages, thus requiring less precision in the definition of
the beginning and end of the time windows. In this way,
FlexCAN also supports exclusive windows but on a group
basis. However, the main advantage of FlexCAN over
TTCAN in terms of time-triggered and dependable features
is that TTCAN has disallowed frame retransmissions, a
notable feature of CAN for dependable operation, whereas
FlexCAN lets CAN retransmit a frame in error but up to a

1

2

1

2

1

2

Safeware
Sensor

Safety
Layer

1

2

1

2

1

2

Safeware
Sensor

Safety
Layer

1

2

Standard
Application

1

2

1

2

1

2

Safeware
Actuator

Safety
Layer

1

2

Standard
Application

Network
Manager

1

2

1

2

1

2

Controller
FTU

Replicated CAN channels

certain time limit. Thus FlexCAN enforces strict message
deadlines.

FlexCAN tolerates the following kinds of faults: transient
arbitrary faults, permanent hardware faults, and permanent
software babbling idiot faults. The semantics of these
faults are as follows. Transient arbitrary faults are the kind
of faults that are detected by the native CAN protocol and
result in error and/or overload frames. Permanent
hardware faults are permanent faults in the
communication controller, transceiver, or bus, and they
are masked by redundant nodes or busses. Permanent
software babbling idiot faults are caused by software
errors in a host controller that uses the bus with wrong
values and at wrong times.

FLEXCAN BASED DRIVE-BY-WIRE SYSTEM

The complete design of a distributed embedded system
(DES) including the communication system can be
complex. In [13], Mishra, and Naik have outlined a
detailed set of design tasks that must be completed, and
it is summarized in Table A. On the other hand, the
detailed analysis of the drive-by-wire system in Section 2
has resulted in a set of messages and ECUs which are
summarized in Table B.

Table A. Main DES design tasks.
Communications Control Computing
Protocol: CAN,
FlexCAN, FlexRay
(max. frame size)

Estimation
algorithms

O.S. ? (none,
executive,
scheduler)

Network layout:
dual bus, number
of ECUs

Control
algorithms: link
controllers,
tuning, sturdy
Control
architecture:
hierarchical,
supervisory
control

Overall software
configuration
(programming
language, O.S.,
CAN drivers,
I/O, timers)

Network Hardware
layout: Detailed
microcontrollers

Sensors/actuat
ors
Sensor fusion

Signal to
message
mapping

Fault tolerance:
Replicated main
controllers, Bus
guardians

Function to
task mapping
Task code
generation

Frame
configuration

Details: Data rate,
cycle time

Estimation of
task WCETs

Task scheduling
(if any)

Message priorities Determination
of task
interface
variables

Special task
programming
(not done by
code
generation)

Global message
scheduling

Task
precedence
constraints

Software and
hardware
integration

The first important choices involve the communication
protocol, the operating system (if any), the microcontroller
and associated drivers. For this paper we use the
FlexCAN communication architecture based on the CAN
protocol. For some applications, particularly if they run on
top of backbone type networks (e.g., FlexRay) the use of
a real-time operating system (e.g., OSEK) is appropriate.
However for safety-critical systems such as a drive-by-
wire, the advantages of a real-time operating system have
not yet been demonstrated. For simplicity, we do not use
an operating system and rely on a real-time executive
instead. We have decided to use the Freescale
MC56F8367EVM microcontroller.

Table B. Message details of the drive-by-wire system
Message Size

(bits)
ECU Functional

Description
M1 32 Hand wheel

(HW)
Steering angle
command

M2 32 Pedal (P) Acceleration
command

M3 64 Central (C) Acceleration
Reference (32
bits)
Steering angle
reference (32
bits)

M4 56 Traction 1
(T1)

Speed and
status

M5 56 Traction 2
(T2)

Speed and
status

M6 56 Steering 1
(S1)

Speed and
status

M7 56 Steering 2
(S2)

Speed and
status

M8 32 Force
reaction (FR)

Force feedback

M9 64 Central (C) Gateway
message

The control architecture and control algorithms were
summarized in Section 2 and described in more detail by
Bertoluzzo et al. in [4]. For the drive-by-wire system, the
signal-to-message mapping is straightforward, since there
is a direct correspondence between signals (steering,
acceleration) and the corresponding message. Messages
m4 through m7 carry a combination of various signals,
speed, motor current, and temperature taking 2 bytes, 2
bytes, and 1 byte respectively. The function-to-software
task mapping for this application is simple, since there is
no operating system and software tasks are modularized
as C functions within a node. Instead of tasks there are
monolithic programs (one per ECU) that implement the
functions summarized in Table B, including the
communications and additional safety considerations
described in Section 2.

In terms of dependability, the central ECU in Fig. 2
constitutes a single point of failure. Since it can have
safety implications, it will be duplicated. We will also
duplicate the CAN bus, resulting in the network layout of
Fig. 4. Although not depicted in Fig. 4 but evident from
Fig. 2, the sensor inputs to the HW and P control units
are also duplicated to improve the fault-tolerant behavior of
the overall system.

Figure 4. Drive-by-wire network layout.

Since FlexCAN requires a data source to generate
reference messages, we chose the steering angle
command message m1 as the reference message with a
basic cycle of 10 ms and a sub-cycle of 2.5 ms (i.e. Q =
4). We then generate the global message schedule as
shown in Fig. 5, which also shows the write times for the
bus guardians. Table C shows the worst-case message
latencies for a 1 Mbps network for various error situations
(0, 1, 2, or 3 errors per sub-cycle). For example,
assuming 3 errors per sub-cycle (an extremely high error
rate) the data transmission, including the errors takes
3.314 ms, resulting in a 33.14 % bus utilization.

SOFTWARE ISSUES

The global message schedule depicted in Fig. 5 provides
the synchronization among the software running on the
various nodes. Because of its role as the source of the
reference message, the hand wheel node is where
everything begins in terms of a data chain. This node has
an interrupt set to the basic cycle (10 ms). When the
pedal ECU sees the message ID for m1 on the bus, it
samples the accelerator pedal position and queues
message m2 for transmission. Meanwhile, ECUs S1, S2,
and FR, upon seeing message m1 on the bus, start
timers programmed to interrupt after 2.5 ms, after which
they sample their corresponding signals and send
messages m6, m7, and m8. Likewise, ECUs T1 and T2,
upon seeing message m1 on the bus start timers set to
interrupt after 5 ms, after which they sample their
corresponding signals and send messages m4 and m5. In
the meantime, when the central ECU reads messages m1
and m2 it begins processing the commands contained in
these messages to generate the corresponding references
contained in message m3. The central ECU will queue

messages m3 and m9 for transmission 7.5 ms after seeing
the ID for message m1 on the bus by means of an
interrupting timer. The software in the central ECU and its
backup (i.e., replica) are identical. The only difference is
that the hardware addresses in the central ECU and its
replica are set to 00 and 01 (binary) respectively. The
SafeCAN protocol will take care of initialization and the
fault-management details transparently from the user.

DEPENDABILITY AND PERFORMANCE
EVALUATION OF THE DESIGN

In terms of payload, protocol efficiency (?), and bus
utilization (Ub) calculations, ? is defined as the ratio of the
payload bits A to the total number of bits (F) of the
corresponding data frame. For CAN, assuming 11-bit
identifiers,

 AAF +++= 475/)34([1]

Thus,

F
A

=η [2]

Figure. 5. Global message schedule including
network nodes and bus guardians.

The maximum efficiency of CAN occurs when A = 64 bits
(8 data bytes) yielding ? = 48.85%. For a 29-bit identifier
such as the option used in FlexCAN or the SAE J1939
standard, the total number of bits in the frame is

 AAF +++= 665/)53([3]

Table D lists the payload bits A, the total number of bits F
per message frame, the protocol utilization per message,

HW

P

S1

S2

T1

T2

FR

C(P)

HW_Position HW_Position HW_Position HW_Position HW_Position

Angle, speed
commands

Traction speed
and status

Steering speed,
status and force fdk

Angle, speed
references,
Gateway

Basic Cycle

R1 R4R2 R3

m1, m2 m6, m7, m8 m4, m5 m3,m9

Network
Nodes

C(S)

Bus
Guardians

C C HW P

Acceleration
Pedal

Hand
Wheel

Control

S1 S2 FR T1 T2

Steering 1 Steering 2 Force
Reaction

Traction 1 Traction 2

CAN bus 1

CAN bus 2

and the CAN identifiers used for all messages of the DbW
system.

For a cyclic communication pattern such as the one used
in FlexCAN, bus utilization is a more appropriate
performance measure than protocol efficiency. There are
three types of intervals in a sub-cyclic interval Tsc:
message transmission interval Ttx, the bus inactivity
interval Tina, and the free interval Tfree. All error-free
messages are transmitted during the message
transmission interval. Likewise all error and overload
frames are transmitted during the inactivity interval. The
interval when the bus is idle and could be used to transmit
additional messages not currently scheduled is called the
free interval. These intervals need not be continuous, and
can be spread out over the entire sub-cycle. Thus,

Ttx + Tina + Tfree = Tsc [4]

The bus utilization is defined as the ratio of the time
period when there is bus activity (i.e., data and error
transmission) over the sub-cyclic interval. That is,

sc

inatx
b T

TT
U

+
= [5]

Table C. Maximum message latencies (in microseconds)
for global message schedule with errors.
University of Padova Lift Truck Project
Message
Schedule

1 Mbps 0 Errors 1
error

2
errors

3
errors

M1+m2 R1 232 382 532 682
M6+m7+m8 R2 404 582 760 938
m4+m5 R3 288 466 644 822
m3+m9 R4 308 496 684 872

Total 1232 1926 2620 3314

The control delay is an important performance measure for
network-based control systems such as the DbW
system. It is defined as the time interval from when a
sensor value is taken until the corresponding reference
signal is delivered to the control system. For the steering
control system, the control delay involves the time to
acquire a steering angle signal and generate the steering
command message (very small), the queuing and
transmission of this message on the bus, the time for the
central ECU to calculate the steering reference message,
the queuing and transmission of this message on the bus,
and the generation of the reference signal for the steering
control system. Because of the message schedule shown
in Fig. 5, the control delay is between 7.5 and 10 ms. As
noted; the FlexCAN architecture tolerates several errors
per sub-cycle. In Table C we have calculated the sum of
message transmission interval Ttx and the bus inactivity
interval Tina and labeled it Ri for 1, 2, and 3 errors. The
worst-case calculation is 3 errors per sub-cycle (2.5 ms),

which is equivalent to a bit error rate (BER) of 3/2500 or
1.2x10-3. Table E shows the performance details of the
FlexCAN-based design of the DbW system

Table D. Details of FlexCAN frames with message IDs.
Message Applica

-tion
Size
(bits)
A

Frame
Size
with
stuff bits
F

Protocol
efficiency
per
message

Message
ID
(Priority)
In Hex

M1 32 116 27.58 % 100
M2 32 116 27.58 % 300
M3 64 154 41.55 % 200
M4 56 144 38.88 % 400
M5 56 144 38.88 % 480
M6 56 144 38.88 % 500
M7 56 144 38.88 % 580
M8 32 116 27.58 % 600
M9 64 154 41.55 % 280

Table E. Performance details of FlexCAN-based DbW
system.
Data
Rate
(Mbps)

No. of
buses

Basic
Cycle
(ms)

No. of
ECUs

No. of
messages

1 2 10 8 9

Replicated
ECUs

BER
Tolerated

Control
Delay
(ms)

Bus
Utilizati
on

Central 1.2x10-3 [7.5-10] 33.14%

SUMMARY AND CONCLUSIONS

The detailed design of a FlexCAN-based safety-critical
DbW system for a lift truck has been presented. The
FlexCAN design is currently being implemented at
Kettering University with the final overall implementation
and testing to be performed at the Laboratory of Industrial
Automation, University of Padova, Italy. The number of
messages of the actual safety-critical DbW system is in
the order of magnitude of 10, well within the capabilities of
FlexCAN. FlexCAN reduces jitter thanks to its TDMA
feature. Global message scheduling is simple, even when
one takes communication errors into account. The
assumption of 3 errors per sub-cycle (2.5 ms) is
equivalent to a BER of 1.2x10-3, well below that found in
actual environments. The DbW system is a safe design
with some fault-tolerant features and meets the safety-
critical requirements specified at the beginning of the
project.

REFERENCES

1. J.R.Pimentel, “An Architecture for a safety-critical
steer-by-wire system,” Proc. of the SAE World
Congress, Detroit, Michigan, 2004.

2. E.A.Bretz, "By-wire cars turn the corner", IEEE
Spectrum magazine, vol.38, no.4, Apr. 2001, 60-73.

3. M.Bertoluzzo, P.Bolognesi, O.Bruno, G.Buja, A.Landi
and A.Zuccollo, “Drive-by-wire systems for ground
vehicles”, in Proc. of IEEE International Symposium
on Industrial Electronics, pp.711-716, 2004.

4. M.Bertoluzzo, G.Buja and A.Zuccollo, “Design of
drive-by-wire communication network for an industrial
vehicle”, Proc. of IEEE International Conference on
Industrial Informatics (INDIN), pp.155-160, 2004.

5. E.Dilger T.Führer, B.Müller and S.Poledna, "The X-By-
Wire Concept: Time-triggered information exchange
and fail silence support by new system services",
SAE, Paper 8-PC124, 1998. Available: http://
www.vmars.tuwien.ac.at /projects /xbywire /projects
/new-bosch.htm

6. R.Isermann, R.Schwartz and S.Stolzl, "Fault-tolerant
drive-by-wire systems," IEEE Control Systems
Magazine, vol.22, no.5, Oct. 2002, 64-81.

7. A.T.Zaremba, M.K.Liubakka and R.M.Stuntz, "Control
and steering feel issues in the design of an electric
power steering system," in Proc. of American Control
Conference, 1998, vol.1, 36-40.

8. C.Temple. (2004, June). Protocol Overview, Presented
at FlexRay International Seminar. [Online]. Available:
www.flexray.com/publications.php.

9. T. Führer, B. Müller, W. Dieterle, F. Hartwich, R.
Hugel and M. Walther, “Time-triggered
Communication on CAN (Time-triggered CAN-
TTCAN)”, Proc. of the 7th International CAN
Conference, 2000. http://www.can-
cia.de/can/ttcan/fuehrer.pdf.

10. J.R.Pimentel and J.Kaniarz, “A CAN-Based
Application Level Error-Detection and Fault-
Containment Protocol”, Proc. of 11th IFAC Symp. on
Information Control Problems in Manufacturing
(INCOM), Salvador, Brazil, 2004.

11. J.R.Pimentel and J.A. Fonseca, “FlexCAN: A Flexible
Architecture for highly dependable embedded
applications,”, RTN 2004 – 3rd Int. Workshop on Real-
Time Networks, held in conjunction with the 16th

Euromicro Intl. Conference on Real-Time Systems,
Catania, Italy, June 2004.

12. G.Buja, J.R.Pimentel and A.Zuccollo, “Overcoming
Babbling-Idiot Failures in the FlexCAN Architecture: A
Simple Bus-Guardian,”, Proc. of the 10th IEEE Int.
conference on Emerging Technologies on Factory
Automation (ETFA 2005), pp. 461-468, Catania, Italy,
Sept. 2005.

13. P.K.Mishra, and S.M.Naik, Distributed Control
System Development for FlexRay Based Systems,
SAE paper 2005-05AE-329.

CONTACT

Dr. Juan R. Pimentel, Professor
Department of Electrical and Computer Engineering
Kettering University
Flint, MI 48504
USA
Email: jpimente@kettering.edu

Manuele Bertoluzzo and Giuseppe Buja
Department of Electrical Engineering
University of Padova
Padova, Italy
E-mail: giuseppe.buja@unipd.it

bertoluzzo@die.unipd.it

