Lecture 21: Interrupt Program Example
Today’s Goals

• Use edge-triggered interrupt and real time interrupt
Example

Interrupt-driven program

• Write an interrupt-driven program that implements the following requirements.

• This program will perform roughly the same function as the stopwatch feature on many wristwatches.

• Requirements
 – When the program begins, the 7-segment display should read “0000” and not incrementing.
 – When the pushbutton BUTTN0 is pressed, the display should increment by 1 at 1-second intervals.
 – When the pushbutton BUTTN0 is pressed a second time, the display should halt at the current value.
 – When the pushbutton BUTTN0 is pressed a third time, the display should reset to “0000” and be ready to start the timing process again
Example – cont’d

Notes

• The main program will be used as a loop to cycle through the 7-segment displays.

• The push button can be pressed at any time so it should be enabled initially.

• The RTI will only need to be enabled during the timing operation.

• There might be much better approaches...
Main Program Flowchart

1. Start
2. Configure the RTI device
3. Configure and enable the Port H interrupt
4. Initialize the 7-segment display
5. Enable interrupts
6. Display the digits on 7-segment display
RTI ISR Flowchart

1. Start RTI Interrupt
2. RTI Flag is not set
 - TRUE
 - RTI Flag is not set
 - Clear the RTI Flag
 - Decrement count of interrupts
 - Count of interrupts is > 0
 - TRUE
 - Exit RTI Interrupt
 - FALSE
 - Reset count for 1 sec and increment time
 - FALSE
 - Exit RTI Interrupt

3. Count of interrupts is > 0
 - FALSE
 - Exit RTI Interrupt

4. Exit RTI Interrupt
Port H ISR Flowchart

Start PTH Interrupt

- PTH Flag is not set
 - Clear the PTH Flag
 - Disable the timer
 - Timer is active
 - Display is “0000”
 - Set display to “0000”
 - Exit PTH Interrupt
 - Display is not “0000”
 - Reset count and enable timer
 - Timer is active
 - Display is “0000”
 - Set display to “0000”
 - Exit PTH Interrupt
 - Display is not “0000”
 - Reset count and enable timer

- PTH Flag is set
 - Exit PTH Interrupt
#INCLUDE d12plus.inc

;==

; !! This program needs to get 'seven_seg.s19' loaded
;==

;==

; Addresses of the subroutines for 7 segment LED digit display
;==

; Initialize 7 segment LED digits
INIT7SEG EQU PROGSTART+$800

;==

; Display a 7 segment LED digit
; Input:
; A: which of 4 digits
; B: ASCII number
DISP7SEG EQU PROGSTART+$880

;==

; Set an ISR to the interrupt vector table
ORG IVEC_PORTH
DC.WISR_PSHBUTTON
ORG IVEC_RTI
DC.WISR_RTI
Program Code – Variables and Macro

;==
; Data section
;--
ORG DATASTART
; create storage for the patterns for each digit
ASCIINUM DS.B4
; real time interrupt counter
RTICOUNT DS.W1

;==
; Program section
;--
; Macro
;--
CLEAR_ASCIINUM MACRO
; initialize the display to 0's
MOV #$0, ASCIINUM
MOV #$0, ASCIINUM+1
MOV #$0, ASCIINUM+2
MOV #$0, ASCIINUM+3
ENDM
Program Code - Main

;--
; Main program
;--

ORG PROGSTART
LDS #STACKSTART

JSR INIT7SEG

; configure-enable SW5 interrupt (portH)
BCLR PORTH, BUTTN0
BSET PIEH, BUTTN0

; configure RTI device
MOVB #RTICTLVAL, RTICTL

; initialize the display to 0's
CLEAR_ASCIINUM

; enable interrupts...
CLI
Program Code – Main (continued)

; and wait for things to happen

LOOP:
 LDAB ASCIINUM
 LDAA #DIGIT3
 JSR DISP7SEG
 JSR PAUSE
 LDAB ASCIINUM+1
 LDAA #DIGIT2
 JSR DISP7SEG
 JSR PAUSE
 LDAB ASCIINUM+2
 LDAA #DIGIT1
 JSR DISP7SEG
 JSR PAUSE
 LDAB ASCIINUM+3
 LDAA #DIGIT0
 JSR DISP7SEG
 JSR PAUSE
BRA LOOP
Program Code – Subroutines

; Subroutines

; INCASCIIWRAP
; Input:
; B: ASCII number
; Output:
; B: (B)+1 if (B) < '9'
INCASCIIWRAP INCB
CMPB '#9'
BNE ENDINCWRAP
LDAB '#0'
ENDINCWRAP: RTS

; PAUSE
; Pause for about 0.1 ms
PAUSE LDX #600
PSLOOP: DEX
BNE PSLOOP
RTS
ISR_RTI
BRCLR CRGFLG, RTIF, RTIEND
LDAA #RTIF
STAA CRGFLG ; store 1 to reset the flag

; count interrupt for incrementing the display
LDD RTICOUNT
SUBD #1
STD RTICOUNT
BNE RTIEND
MOVW #ONESEC, RTICOUNT
; increment display as a 4-digit value
LDAB ASCIIINUM+3
JSR INCASCIIWRAP
STAB ASCIIINUM+3
CMPB #'0'
BNE RTIEND

LDAB ASCIIINUM+2
JSR INCASCIIWRAP
STAB ASCIIINUM+2
CMPB #'0'
BNE RTIEND
Program Code – Real Time ISR (continued)

LDAB ASCII+1
JSR INCASCIWRAP
STAB ASCII+1
CMPB #'0'
BNE RTIEND

LDAB ASCII
JSR INCASCIWRAP
STAB ASCII

RTIEND: RTI
ISR_PSHBUTTN BRCLR PIFH, BUTTN0, PSHBUTTNEND
; set to 1 to reset PIFH flag
BSET PIFH, BUTTN0
; if RTI is already enabled, then
; go to disable (stop RTI)
BRSET CRGINT, RTIE, DISABLE

LDD ASCIINUM
CPD #$3030
BNE CLEARTIME
LDD ASCIINUM+2
CPD #$3030
BNE CLEARTIME

; start timer
MOVW #ONESEC, RTICOUNT
BSET CRGINT, RTIE
BRA PSHBUTTNEND
; clear timer
CLEARTIME: CLEAR_ASCIINUM
BRA PSHBUTTNEND

; stop timer
DISABLE: BCLR CRGINT,RTIE
PSHBUTTNEND: RTI
Questions?
Wrap-up

What we’ve learned

• Example of interrupt-driven program
 – Trigger-edged interrupt
 – Real time interrupt

• Study this example code
 – Help to do your lab program assignments
What to Come

• Now, we will discuss C programming for embedded systems.