Lecture 12:
Boolean Logic Instructions
Today’s Goals

• Learn how to use Boolean instructions in assembly code
Logical Instructions

• One of the main purposes of the logical instructions is to affect individual bits of a byte without affecting the others.

• Target and Mask byte
 ▪ Target byte with the data
 ▪ Mask byte which determines which bits are affected.

• Format
 ▪ [logical instruction][register or memory] [mask byte]
 ▪ Ex. ANDA #%00001111

<table>
<thead>
<tr>
<th>Function</th>
<th>0 Mask Bit</th>
<th>1 Mask Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>Clear to 0</td>
<td>No affect</td>
</tr>
<tr>
<td>OR</td>
<td>No affect</td>
<td>Set to 1</td>
</tr>
<tr>
<td>XOR</td>
<td>No affect</td>
<td>Toggle</td>
</tr>
</tbody>
</table>
AND

ANDA and ANDB

- ANDA and ANDB
 - affect N and Z
 - clear V
 - no affect on C

- Example
 - Determine if the number in location $1000 is evenly divisible by 8.

```
LDAA $1000
ANDA #%00000111 ; or #$07
; If the Branch is taken, the number is divisible
BEQ xxx
```
OR, XOR, and NOT

- **ORAA, ORAB**
 - affect N and Z
 - clear V
 - no affect on C

- **EORA, EORB** (meaning XOR)
 - affect N and Z
 - clear V
 - no affect on C

- **COMA, COMB, COM** (meaning NOT)
 - All eight bits are complemented.
 - A mask byte is not used. (right?)
 - affect N, Z
 - clear V
 - set C to 1
Example

- Consider a two-door sports car with a trunk and a glove box.
 - Assume that contact switches are used to
 - monitor each door and
 - send signals to the processor indicating
 - whether the door is open (TRUE) or closed (FALSE)
 - Four bits are needed to monitor two side doors, a trunk, and a glove box.
 - The four bits will be 7, 6, 5, and 4 of memory 0000.
 - Microprocessor can read the contents of this location at any time to read the status of the doors.
 - Also the microprocessor maintains a bit for the cabin light, the trunk light, and the glove box light.
 - Storing a 0 in the bit causes the light to be OFF
 - Storing a 1 makes the light ON.
 - These four bits will be 2, 1, and 0 of the location 1000 respectively.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>GBOXD</td>
<td>LEFTD</td>
<td>RGHTD</td>
<td>TRNKD</td>
<td>-</td>
<td>GBOXL</td>
<td>CBNL</td>
</tr>
</tbody>
</table>
Example

Turn off the glove box light without affecting the other bits.

- Turn OFF \(\rightarrow\) Use AND with a proper mask byte

```
LDAA $00
ANDA #%11111011
STAA $00
```
Example

Turn on the **trunk light** without affecting the other bits.

- Turn ON → Use OR with a proper mask byte

```
LDAA $00
ORA #$00000001
STAA $00
```
Example

Turn on the glove box light and the cabin light without affecting the other bits.

• Turn ON → Use OR with a proper mask byte

```
LDAA $00
ORA #%00000101
STAA $00
```
Example

Toggle the cabin light without affecting the other bits.

• Toggle → Use XOR with a proper mask byte

```
LDAA $00
EORA #00000010
STAA $00
```
Example

Negate accumulator D

- Negate accumulator D

 COMA
 COMB
 ADD #1

- Negate D without using the logical complement functions

 EORA #811111111 ; #$FF
 EORB #811111111 ; #$FF
 ADDD #1
Example

Toggle the cabin lights at exactly 1000 Hz

flip:
LDAA $00 ; 3
EORA #CBNL ; 2
STAA $00 ; 3
LDX #N ; 2

loop:
DEX ; N
BNE loop ; 3(N-1)+1
BRA flip ; 3

• 1KHz \(\rightarrow\) 1000 times / sec

• Clock speed of Dragon12+:
 ▪ 24 MHz (24,000,000 Hz) means 24 million clock cycles / sec

• When the sum of all cycles of the lines become 24,000, we can say the module runs 1,000 times per second.

 • \(3 + 2 + 3 + 2 + N + 3(N-1) + 1 + 3 = 24,000\)
 ▪ \(11 + 4N = 24,000\) then, \(4N = 23989\). Therefore, \(N = 5997.25\)
 ▪ \(N\) should be an integer, so \(4N + 11 + ? = 24,000\)
 ▪ If 5 is used for ?, then \(N = 5996\)
Example – continued

Toggle the cabin lights at exactly 1,000 Hz

```assembly
flip:    LDAA $00 ; 3
         EORA #CBNL ; 2
         NOP ; 1
         NOP ; 1 (to add 5 extra clock cycles)
         BRA 0 ; 3 (use 3 clock cycles while do nothing)
         STAA $00 ; 3 (use 3 clock cycles while do nothing)
         LDX #5996 ; 2

loop:    DEX ; 5996
         BNE loop ; 3(5996-1)+1
         BRA flip ; 3
```
A Short Story about K and M in bytes

- In general,
 - K means 1,000
 - M means 1,000,000

- When you count bytes,
 - K means 1,024
 - M means 1,024 x 1,024

- 1,024 comes from
 - \(2^{10} = 1,024 \)
 - Remember 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...
Questions?
Wrap-up

What we’ve learned

• Boolean logical instructions
• ANDx, ORAx, EORx, and COMx
What to Come

- Bit instructions
- Stack
- Subroutines