Lecture 9:
Assembly Language Example
Today’s Topics

• Flowcharts
• Practice assembly programming
Flowcharts

- There are other more sophisticated methods of representing programs.
- Flowcharts work well for software written in assembly code level.
- We will see logical building blocks in flowchart formats along with assembly code templates.
Flowcharts

Meaning of symbols

- There are many more symbols other than these.
- Shapes may be different.
- In this course, those four symbols are pretty much all we need.
Flowcharts
If-Then-Else

Set CCR bits for decision
Bxx Process A
Process B code

If(PillColor == RED)
RealWorld
Else
Matrix

Example:
ldaa PillColor
cmpa #RED
bne lmatrix
RealWorld
bra lskip
lmatrix: Matrix
lskip: ...
Flowcharts

While–Do

Set CCR bits for decision
Bxx past BRA
Process code
Set CCR bits for decision
BRA to Bxx

Example:

```
ldaa KnowThis
lloop: cmpa #YES
  beq  lnext
  StudyMore
ldaa KnowThis
bra  lloop
lnext: NextStep
```
Flowcharts

Repeat–Until

Process code
Set CCR bits
Bxx to Process code

Example:

```assembly
loop:    DoSomething
         ldaa   Result
         beq    1done
         bra    loop

1done:
```
Flowcharts

Case

- Set CCR bits Bxx to Process 1
- Set CCR bits Bxx to Process 2
 ...
- Set CCR bits Bxx to Process N
- Default Process code
- BRA past Process N code
- Process 1 code
- BRA past process N code
- Process 2 code
- BRA past Process N code
 ...
- Process N code

Example:

```
ldaanTemp
cmpa #20
bhs 11
TurnOnHeater
bra lres
11: cmpa #70
bhi 12
FlashIndicator
bra lres
12: cmpa #100
bhi 13
TurnOnCooler
bra lres
13: Alarm
lres:
```
Flowchart Guidelines

• Do not refer to registers in the flowchart

• Arrows should never cross
 ▪ They will not need to if the flowchart represents a structured program

• The purpose is to remove any questions about how to program and understand the algorithm, and this usually determines when the flowchart contains enough detail.
Assembly Example

• Convert an array of 4-byte Big-Endian values to an array of Little-Endian values.

• Let
 ▪ $1000 hold the address of the array of Big-Endian values,
 ▪ $1002 hold the address of the array for the Little-Endian values,
 ▪ $1004 hold the two-byte length of numbers to convert.

• Write an assembly program to implement these requirements.
Start

1: Point to the first BE item
2: Point to the first LE item
3: Make a copy of the length

4. There are no more elements
 TRUE
 End
 FALSE

5: Copy 1st BE byte to 4th LE byte
6: Copy 2nd BE byte to 3rd LE byte
7: Copy 3rd BE byte to 2nd LE byte
8: Copy 4th BE byte to 1st LE byte
9: Point to next elements & dec length
Start

1: Point to the first BE item

2: Point to the first LE item

3: Make a copy of the length

4. There are no more elements

TRUE

5: Copy 1st BE byte to 4th LE byte

6: Copy 2nd BE byte to 3rd LE byte

7: Copy 3rd BE byte to 2nd LE byte

8: Copy 4th BE byte to 1st LE byte

FALSE

9: Point to next elements & dec length

End

Start

1: Point to the first BE item

2: Point to the first LE item

3: Make a copy of the length

4. There are no more elements

TRUE

5: Copy 1st BE byte to 4th LE byte

6: Copy 2nd BE byte to 3rd LE byte

7: Copy 3rd BE byte to 2nd LE byte

8: Copy 4th BE byte to 1st LE byte

9: Point to next elements & dec length

End

org $1000
BEnd ds.w 1
LEnd ds.w 1
Length ds.w 1
TmpLen ds.w 1
org $2000
ldx BEnd
ldy Lend
ldd Length
Loop std TmpLen ; 3
beq Done
ldaa 0, x ; 3
staa 3, y ; 2
ldaa 1, x ; 3
staa 2, y ; 2
ldaa 2, x ; 3
staa 1, y ; 2
ldaa 3, x ; 3
staa 0, y ; 2
inx ; 1
inx
inx
inx
iny ; 1
iny
iny
iny
ldd TmpLen ; 3
subd #$0001
bra Loop
Done swi
Start
1: Point to the first BE item
2: Point to the first LE item
3: Make a copy of the length

4. There are no more elements
 TRUE
 FALSE
5: Copy 1st BE byte to 4th LE byte
6: Copy 2nd BE byte to 3rd LE byte
7: Copy 3rd BE byte to 2nd LE byte
8: Copy 4th BE byte to 1st LE byte
9: Point to next elements & dec length
End

Note: You can save 10 (= 3 + 2x2 + 3) cycles.

org $1000
Bend ds.w 1
LEnd ds.w 1
Length ds.w 1

org $2000
ldx BEnd
ldy LEnd
ldd Length
Loop beq Done
movb 0,x,3,y ; 5
movb 1,x,2,y
movb 2,x,1,y
movb 3,x,0,y
leax 4,x ; 2
leay 4,y
subd #1 ; 2
bra Loop
Done swi
Questions?
Wrap-up

What we’ve learned

• Flowcharts
 ▪ Templates will be greatly helpful.

• Assembly program example
What to Come

- Arithmetic instructions
- Logic instructions