
Session S2C

0-7803-6424-4/00/$10.00 © 2000 IEEE October 18 - 21, 2000 Kansas City, MO
30th ASEE/IEEE Frontiers in Education Conference

S2C-1

MODULAR TERM-LONG CS2 PROJECTS

James K. Huggins1

1 1James K. Huggins, Kettering University, Computer Science Program, 1700 W. Third Avenue, Flint, MI 48504-4898, jhuggins@kettering.edu

Abstract — We present a model for a term-long CS2 project
which emphasizes modular code development and code-
reuse while providing the opportunity to cover many
traditional CS2 concepts. The project focuses on the
construction of a simplified database system. The project is
composed of a series of smaller assignments; each
assignment requires students to replace or enhance work
completed in previous assignments, thereby allowing
students to experience the benefits of good modular design.
Each project is of manageable size and complexity for both
student and instructor; the final product is a program of
non-trivial size and substantial functionality. The project
can be easily varied from term to term in order to combat
plagiarism, yet remains similar enough to administrate
reliably We have successfully used this model over the last
three years.

Index Terms — CS2, modular programs, re-use, term-long
projects

INTRODUCTION

At Kettering University (formerly known as GMI Engineering
& Management Institute), we use Java as our language of
instruction for CS1 and CS2, using Sun Microsystems' Java
Development Kit (JDK) [5]. Teaching CS2 at our institution
presents several unique challenges.

All students at Kettering University alternate between
twelve weeks of classroom instruction and twelve weeks of
corporate work experience during their academic careers.
Thus, every CS2 student experiences a three-month gap
between the end of CS1 and the beginning of CS2. During
that three-month gap, these students may not use Java at all,
or they may have used other programming languages.
Consequently, students need an opportunity (albeit brief) to
re-acquaint themselves with Java (and our programming
environment) before effective instruction can begin.

Students at Kettering University take an average of five
courses per term, beginning in the first year. Thus, most CS2
students are terribly busy with projects and quickly become
deadline-driven in their approach to coursework. This makes
large, term-long projects difficult to execute successfully

without creating many small checkpoints that serve as
miniature deadlines.

Teaching CS1 in Java in eleven weeks of classroom
instruction (reserving the twelfth week for final exams) is a
significant challenge. We must cover object-oriented
programming in CS1, as Java's object model is central to the
language. Adding this material to our CS1 course
necessitates deferring virtually all non-essential topics to
CS2. In particular, the use of Java's Abstract Windowing
Toolkit (AWT) [6] for building graphical applications and
applets cannot be covered in CS1, much to the
disappointment of our students (who are excited about the
prospect of building their own Java graphical systems).

Amidst all of these challenges, we still attempt to cover
the usual CS2 topics, including recursion, dynamic data
structures, classical abstract data types, algorithm analysis,
and further development of the object-oriented programming
philosophy. Traditionally this course also incorporates a
large-scale project to begin to give students experience in
working with programs of non-trivial size.

We describe a model for a term-long project which
emphasizes modular program development, utilizes a variety
of dynamic data structures, ends in a GUI-driven application,
and is still feasible to complete given the above constraints.
This model has been successfully used over several
successive terms.

OVERVIEW OF THE PROJECT

The term-long project centers on the construction of a
simplified database system. Examples of projects used in the
past include:
• A dictionary for a simple block-replacement code

mapping cleartext words to their encoded counterparts
and vice versa.

• A circulation system for a video store with a list of
videos which can be checked out and later returned

• A system for maintaining a student's academic history,
with lists of courses taken and the corresponding
grades.

The term-long project is broken into four smaller

projects. Students are given two weeks to complete each

Session S2C

0-7803-6424-4/00/$10.00 © 2000 IEEE October 18 - 21, 2000 Kansas City, MO
30th ASEE/IEEE Frontiers in Education Conference

S2C-2

project. (The remaining three weeks are used for an
additional stand-alone program focused on recursive
backtracking and a pause for the midterm examination.)

Program 1: Setting The Framework

In Program 1, students develop a simple version of the
database program. The program reads the database from a
text file (stored in a simple format) and allows the user to
search the database for specific records and print the entire
database.

Students are required to implement this program using
several classes:
• A class representing the database records being

manipulated by the system (e.g. dictionary entries,
videos, and courses), with associated methods for
creating and modifying individual records.

• A class representing a collection of database records,
with associated methods for creating and manipulating
this collection. For Program 1, students implement this
collection as an (unordered) array of records.

• A class representing the driver for the program, which
calls various methods from the collection class upon
request from the user. For Program 1, all user requests
and responses are performed through standard input
and output using simple text -based I/O routines.

• Any additional classes deemed helpful by the student.

Students are instructed to design their programs in as

modular a manner as possible. In particular, students are
warned that they will be revising and replacing these classes
as the term progresses.

This program is comparable in difficulty to programs
which students are writing at the end of our CS1 course.
Consequently, this program can be (and is) assigned on the
first day of CS2.

Program 2: Dynamic Collections

In Program 2, students are required to replace the array-
based collection class used in Program 1 with another class
using dynamically allocated linked lists. Several variations
on the linked list theme have been used in different
semesters:
• A classical, singly linked list
• A doubly-sorted linked list (where each node in the list

has two links, indicating the successor with respect to
each sorting scheme)

• A collection of a fixed number of linked lists (e.g. lists of
checked-in and checked-out videos)

• A linked list of linked lists (e.g. for the academic history
database, a linked list of terms, each containing a linked
list of courses taken during that term)

Students are required to maintain the linked lists in an
appropriate sorted order. Additionally, students are required
to implement new user commands that call for inserting and
deleting records into those linked lists. Often, these user
commands require insertion and deletion only implicitly (e.g.
checking out a video requires a deletion from the checked-in
list and an insertion into the checked-out list).

Program 3: More Dynamic Collections

In Program 3, students are required to replace (again) the
collection class with another class using dynamically
allocated binary search trees. Several variations on the tree
theme have been used in different semesters:
• A classical binary search tree
• A doubly-sorted binary search tree (where each node in

the tree has four links, two for each tree)
• A collection of a fixed number of binary search trees
• A combination of linked lists and trees (e.g. a linked list

of tree structures)

The same ordering scheme used in the previous

programs is used to order the binary search tree(s). Students
are additionally required to implement new user commands,
notably explicit save-to-file and load-from-file commands.

Program 4: Graphical Interface

In Program 4, students are required to replace the text -
oriented user interface used in Program 3 with a graphical
interface, using Java's Abstract Windowing Toolkit (AWT).
Students are not required to add any new functionality to the
program; rather, all functionality present in previous
programs (which usually involves 8-10 different user
commands by this point) must be supported in a graphical
framework.

DISCUSSION

The use of term-long projects in CS2 is certainly not original
to this paper; many others have successfully used term
projects with great success [2,4,9]. This particular framework
for a CS2 term-long project has been successfully used for
the last three years. Some of the benefits of this scheme are
outlined below.

Modularity and Reuse

One of the well-known difficulties of teaching programming
is the chasm between traditional, short, self-contained
programming projects often used in CS1/CS2 and the large,
integrated, continuing projects with which programmers must
contend in real-life. While senior-level design courses (e.g.,
software engineering) can provide students with experiences

Session S2C

0-7803-6424-4/00/$10.00 © 2000 IEEE October 18 - 21, 2000 Kansas City, MO
30th ASEE/IEEE Frontiers in Education Conference

S2C-3

in "programming in the large," opportunities to gain
experience in writing and re-writing programs early in the
curriculum is highly desirable, especially for students who
are already putting their skills to use in a co-operative work
setting.

The model presented above provides multiple
opportunities for students to practice modular design.
Students are forced to alter one or more classes on three
separate occasions. This gives them the opportunity to
experience the benefits (or consequences) of their own
design choices, as the collection class changes from arrays
to linked lists to binary search trees, and as their interface
class changes from text -based to graphical operation.
Anecdotal evidence suggests that students do seem to get
the point (one way or the other).

Additionally, the continual reuse of existing code from
program to program gives students the opportunity (and in
some cases, the obligation) to correct errors made in earlier
programs while preparing later ones. Errors resulting in
grade deductions on one program still result in the same
deductions unless corrected; this encourages students to
continue working on problematic sections of code rather
than simply "giving up" at the next due date.

Manageable Pieces

One of the difficulties with any large project such as this
(especially given the constraints in our environment) is the
need to divide a large project into several manageable yet
meaningful pieces. If the pieces are too small (rarely a
problem), students fail to sufficiently exercise the skills being
taught. If the pieces are too large, students without good
project management skills are prone to failure — and first-
year students in CS2 may have little experience in project
management.

The stages of this project seem to be of appropriate size.
Program 1 is essentially a CS1 project and presents no new
concepts; this allows students to begin working on the
project from the first day of class. In particular, Program 1
gives students the chance to become familiar with the
problem domain (and particularly the file format being used
for input) in isolation from other topics. Program 1 also
allows students to re-familiarize themselves with the Java
language and environment (and gives students who did not
take CS1 in Java one brief opportunity to catch up).

Each new program after the first allows the student to
retain functional code from previous programs, while
focusing their attention on new concepts (i.e., lists, trees,
and graphics). Since the basic program framework has been
established in previous programs, the new concepts can be
considered in isolation.

In particular, Program 4, which introduces the Java AWT
model, allows students to focus on building a graphical
application independent of the underlying functionality. By

the end of Program 3, students have constructed a fairly
sophisticated database program with a significant amount of
functionality which must be converted into graphical form;
this gives students opportunity to work on a large graphical
application independently of the functionality being
supported.

Experience shows that the amount of work required
seems to be appropriate; most students complete the work
within the time required, and the few that miss the deadlines
seem to have the usual excuses.

 Project Variety

One of the benefits of this model is its flexibility. While the
general notion of a database project has remained the same
from term to term, there are an infinite number of database
domains that can be used from term to term. This allows for
re-use of the general framework without boring the
instructor.

Even within the framework, there is considerable
flexibility for variation. The exact types of dynamic data
structures used in Programs 2 and 3 can (and have been)
varied from term to term: e.g., singly versus doubly linked
structures, multiply-sorted structures, and multiple levels of
structures (e.g., lists of lists).

Both of the above features of the model seem to allow
re-use of the general model without the danger of students
re-using prior term projects (i.e. plagiarism) to complete their
own projects. As always, the instructor must be careful to
vary the projects sufficiently to make term-to-term plagiarism
more difficult. Experience over the last several terms seems
to indicate that this can be done successfully.

Additionally, the model is flexible enough to permit
substitution of other related projects in addition to or in lieu
of the specified projects. For example, in one term, students
implemented a bookstore catalog, where book records
included the number of pages and price of the respective
book. As an exercise in recursive problem solving and
backtracking, students were asked to solve a knapsack
problem (using brute-force solving) using book page counts
and prices from the bookstore database. This integrated the
usually independent program on recursive backtracking into
the rest of the program for the term. In another term,
students implemented a course catalog, including
information on course pre-requisites. In lieu of the final
graphical program, students re-implemented the database as
a directed graph and produced a topological sort of the
courses in the database.

Project Constancy

Another benefit of the model is the relative constancy of the
project. Offering essentially the same project over multiple
terms allows the instructor to observe the problems which

Session S2C

0-7803-6424-4/00/$10.00 © 2000 IEEE October 18 - 21, 2000 Kansas City, MO
30th ASEE/IEEE Frontiers in Education Conference

S2C-4

students encounter multiple times. In practice, students
have similar problems with this project from term to term;
over time, the instructor learns which problems are most
likely and can be better prepared to counsel students when
they encounter them.

The relative constancy of the model also makes the
model easier to administer. An instructor can know what to
expect in terms of the work required to introduce the model,
counsel students, and score submissions, making time
management easier, especially when one has other classes to
teach.

 Drawbacks

This model has been used over nine consecutive terms with
success. Of course, this model has its drawbacks.

The constancy of this model was promoted above as an
advantage; the same constancy can also be a drawback. It is
a truism that "familiarity breeds contempt" [8]; excessive
familiarity with the project holds the danger of taking
shortcuts in the presentation or administration of the project.
For example, preparing program descriptions from term to
term naturally leads to copying previous program
descriptions and making the appropriate changes (e.g.,
changing the name of the database objects); it is all too easy
in such a model to miss a necessary change.

The constancy of this model also lacks variety. The
database project itself isn't terribly "nifty" [7] or uniquely
interesting, although that can be alleviated somewhat by the
choice of database in a given term.

Of course, one of the dangers of a constant model is the
possibility of plagiarism as programs from previous terms
may circulate among current students. It is another truism
that "eternal vigilance is the price of liberty" [3]; the model
requires attention to ensure that enough variety is
introduced from term to term to make plagiarism more
difficult.

The observant reader may have noticed that one
significant topic, recursion, does not appear to be a major
component of this project. Recursion is covered in depth in
another stand-alone project involving recursive backtracking
to solve a search problem (e.g., the "eight-queens" puzzle).
It would be nice to incorporate this problem into the term-
long project. (Of course, recursion is naturally integrated
into discussions of dynamic data structures.)

CONCLUSION

We have presented a model for a term-long CS2 project
which covers many of the traditional CS2 topics while
requiring students to continually revise and extend previous
code, thus providing students with practical incentive to
write code in a modular fashion. The model is simple to
present and administer, yet provides enough opportunity for
variation to allow its use from term to term. We offer the
model as an example of how to perform term-long projects
even in environments in which such large projects might
otherwise seem infeasible.

ACKNOWLEDGMENT

Thanks to Steven C. Cater for providing the basis for some of
the ideas presented in this paper, and for critiquing early
drafts.

REFERENCES

[1] Bartlett, J., Familiar quotations, 9th edition. Boston, Little,
Brown and Company, 1901,
http://www.columbia.edu/acis/bartleby/bartlett/

[2] Cater, S., "Modula-2 in a program design class,'' Proceedings of
the Second International Modula-2 Conference, Loughborough,
Leicesterschire, United Kingdom, October, 1991, pp. 292--301.

[3] Curran, J., Speech upon the Right of Election, 1790. As quoted
in [1].

[4] Godfrey, M., and Grossman, D., "JDuck: Building a Software
Engineering Tool in Java as a CS2 Project." In D. Joyce, ed.,
Proceedings of the Thirtieth SIGSCE Technical Symposium on
Computer Science Education (SIGCSE'99), pages 48-52. ACM
Press, 1999.

[5] http://java.sun.com/products/OV_jdkProduct.html
[6] http://java.sun.com/products/jdk/awt/index.html
[7] Parlante, N., et. al., "Nifty Assignments Panel." In D. Joyce, ed.,

Proceedings of the Thirtieth SIGSCE Technical Symposium on
Computer Science Education (SIGCSE'99), pages 354-355.
ACM Press, 1999.

[8] Publius, Maxim 640. As quoted in [1].
[9] Turner, J. A., and Zachary, J. L., "Using Course-Long

Programming Projects in CS2." In D. Joyce, ed., Proceedings of
the Thirtieth SIGSCE Technical Symposium on Computer
Science Education (SIGCSE'99), pages 43-47. ACM Press,
1999.

