
The Static and Dynamic Semantics of C

James K. Huggins∗ Wuwei Shen†‡

Abstract

Montages are a semi-visual formalism for defining the static and dynamic semantics of a
programming language using Gurevich’s Abstract State Machines (ASMs). We describe an
application of Montages to describe the static and dynamic semantics of the C programming
language.

1 Introduction

In this paper we present the semantics of the C programming language by Montages, which
is a new method for giving the semantics of a programming language. In general the only
comprehensive description of a programming language is likely its reference manual, which can
be informal and open to misinterpretation. Formal approaches are therefore sought. As an
attempt in this field, Gurevich’s Abstract State Machines (or ASMs) have been successfully
used to model the dynamic semantics of programming languages such as Prolog [6], Occam
[3, 4], C [12], C++ [22], Java [7] and Oberon [19]. But how to represent the static semantics of
a programming language remains a problem when we want to give the complete semantics for a
programming language.

Montages [18] provide a way to describe the static semantics and dynamic semantics of a
programming language. A language specification (i.e. the description of its syntactical and
semantical aspects) is given as a collection of Montages, each of which is associated with a
syntax rule. The semantics of such a collection is given by an ASM. Such an ASM is composed
of two parts: the first part defining the static analysis and semantics of the language, the second
part defining the dynamic semantics of the language. Each program of the specified language
defines an initial state for the ASM, which contains the program parse tree. After we have given
the semantics of a programming language L and a program written in L, the corresponding
ASM ML begins by performing the static analysis for each node of the parse tree. The static
analysis decorates the leaves of the parse tree with control and data flow information, building
the sequence of tokens that are needed by the dynamic semantics. Next, ML executes the
dynamics semantics using the sequence of tokens generated by the first step. Thus, ML can be
seen as an interpreter for L.

∗Kettering University,Computer Science Program, 1700 W. Third Avenue, Flint, MI 48504-4898 USA.
†University of Michigan, EECS Department, 1301 Beal Avenue, Ann Arbor, MI 48109-2122 USA.
‡Partially supported by NSF grant CCR 95-04375.

1

In this paper we present the static and dynamic semantics of C by using Montages. As
a continuation of [12], we also use the ANSI standard for C as described in [17]. We also
concentrate on the following four topics respectively: statements, expressions, type and variable
declarations, and function invocation and return.

The paper is organized as follows. In section 2, we give a brief introduction to ASMs and
Montages. In section 3, 4, 5 and 6, we give the Montages for the above four topics respectively.
In section 7 we discuss this work and compare it with other related works.

2 ASMs and Montages

2.1 Introduction to ASMs

In the following we describe an ASM model [9] which is sufficient to represent the semantics of
C [17]. (ASMs have many features not presented here; see [9] for details.)

The signature of an ASM A is a finite collection of function names, each name having a
fixed arity. A state of A is a set, the superuniverse, together with interpretations of the function
names in the signature. These interpretations are called basic functions of the state. A basic
of function of arity r is an r−ary operation on the superuniverse. When r = 0, such a basic
function is called a distinguished element. The superuniverse does not change as A evolves; the
basic functions may. The superuniverse contains some distinct elements true, false and undef
which are used to describe relations and partial functions. They are logical constants, whose
names do not appear in the signature. In addition, we use equality as a logical constant.

A universe U is an important concept in ASMs. It is a special type of basic function: a
unary relation usually identified with the set {x : U(x)}. ASMs provide some built-in universes
such as the logical constant Boolean = {true, false}. When we define a function f from a
universe U to a universe V , and write f : U → V , we mean that f is a unary operation on the
superuniverse such that f(a) ∈ V for all a ∈ U and f(a) = undef otherwise. We can extend
this notation to notations such as f : U1 × U2 → V and f : V , which means the distinguished
element f belongs to V. In addition the expression f(a) can be written in the form a.f . For the
general case, the expression f(a1, . . . an) can be written in the form a1.f(a2, , an).

There are three kinds of functions in ASMs. A function f is dynamic if f can be changed
as the ASM evolves. Functions which are not dynamic are called static. External functions are
syntactically static, but have their values determined by an oracle (that is, the outside world).

In principle, a program of A is a finite collection of rules, which are defined inductively in
the following:

• Update Rules:

f(s) := t

is a rule with head f .

Here s is a tuple (s1, . . . , sr) of terms where r is the arity of f and r ≥ 0. If f is relational,
then the term t must be Boolean. To fire such a rule, change the value of f at the value
of term s to the value of t.

2

• Conditional Rules: if g is a Boolean term and R1, R2 are rules then

if g then R1

else R2

endif

is a rule. To fire this rule at a given state A, examine the guard g. If g’s value is true at
A, then fire R1; otherwise, fire R2.

• Block: If R1, R2 are rules then

do in − parallel

R1

R2

enddo

is a rule with components R1, R2. Do-in-parallel rules are called blocks. We often omit the
words “do in-parallel” when the scope of the block is clear from context.

Let r1 and r2 be update rules of the following forms:

r1 : f1(s1) := t1 r2 : f2(s2) := t2

r1 and r2 are said to be mutually inconsistent at a given state A if f1 = f2, and the
values of s1 and s2 are equal but the values of t1 and t2 are not equal. Otherwise they are
mutually consistent.

To fire a block R at a given state A, determine first if the update rules which will be fired
in R1 and R2 are mutually consistent. If yes, then fire them simultaneously. If not, do
nothing; R is inconsistent at A.

• Do-forall Rules: If v is a variable, g(v) is a Boolean term and R0(v) is a rule, then

do forall v : g(v)

R0(v)

enddo

is a rule with head variable v, guard g(v) and body R0. A do-forall rule is similar
to the do-in-parallel rule, except that the components are not listed explicitly. Suppose
R is the do-forall rule above. At a state A which maps every variable in R to a value,
the components of R are the rules R0(a) where a is any element in the state A satisfying
g(a) = true. To fire R at A, fire simultaneously all these R0(a) unless they are mutually
inconsistent. In the latter case, do nothing.

3

2.2 Introduction to Montages

Montages [18] are a semi-visual formalism that allows unified and coherent specification of
syntax, static analysis and semantics, and dynamic semantics. Generally speaking, for every
syntax rule there is one corresponding Montage. In every Montage there can be four parts.
The first three parts define the static aspects of the language, which refers to the work which
can be done at compile time (such as static analysis), and the fourth part defines the dynamic
semantics of the language.

2.3 Structure of Montages

Montages are a formalism for the specification of programming languages. The aim of Montages
is to document formally the decisions taken during the design process of realistic programming
languages. Each Montage describes the properties of its instances, which are the nodes in the
parse tree that is generated when a program is analyzed. Every Montage consists of four parts:
the EBNF production rule, the (local) control and data flow graph, the static semantics, and
the dynamic semantics of the construct. Symbols in the right-hand side of the EBNF rule are
called (direct) components of the Montage, and symbols which can be reachable as components
of components are called indirect components. In order to access descendants of a given node in
the parse tree, we can use statically defined attributes called selectors.

In the local control and data flow graph of a Montage, we use the Montage visual language
(MVL) to represent the control and data flow. There are two lexicons in MVL, elements and
edges (or arrows).

Elements are labeled ovals and boxes. Boxes represent components of a Montage. Ovals
represent the dynamic semantics actions associated with the Montage, and are labeled with the
name of the action. If there is only one action then the generic label “self” is used. The dynamic
semantic action will be executed when the oval “self” is reached. If a user gives a name for an
action, then the dynamic semantic action associated with this name (if exists) will be executed
when control reaches it.

Edges are used to connect elements in order to denote the control and data flow. There are
two kinds of edges: solid and dotted arrows. Solid arrows denote data flow and dotted arrows
denote control flow. I (initial) arrows and T (terminal) arrows are two special kinds of control
flow arrows, denoting where the control flow initially enters and from where control finally exits
the construct respectively.

In the static semantics of a Montage, we can give static semantics actions for the Montage.
They are executed during the static analysis. In addition, some syntax rules have some restric-
tions which can be represented in the condition part of a Montage. More details about this
restriction can be found in the following example.

2.4 An Example

Consider the following example for a while statement in a programming language shown in
Figure 1. In this Montage, the topmost part is the production rule defining while statements.

4

The middle part defines data and control flow of the while statements. In particular, in the
control and data flow part the unique action of a while-instance is denoted by the self-oval,
whereas the components are represented with boxes labeled by selectors, e.g. the S-Expression
box for the Expression component.

Whilestatement ::= ”while” ”(” Expression ”)” Statement

S-Expression self

S-Statement

I

cond.value!=0

cond

T

condition S-Expression.staticType=boolean

Figure 1: Semantics of while statements for a programming language.

Dotted control arrows link the exit point of their source with the entry point of their target:
the exit of point of the Expression component is linked with the self action, which is linked with
the entry point of the Statement, and the exit point of the Statement is linked with the entry
point of Expression. In general, control follows this link unconditionally if no firing condition is
given. However if a firing condition is given, like cond.value! = 0 in the above Montage, then
control follows the arrow only if the condition is true. In general, the label of a control flow
arrow is a boolean predicate, defining the firing condition; if the source of the link is active
and the firing condition evaluates to true, control is passed to the target of the link. Otherwise
control follows the dotted control arrow without any labeled names.

In the dynamical behavior of a construct, intermediate results are stored in attributes of the
nodes. In the above example, we assume that each instance of Expression stores its value in an
attribute value. Data flow links from one Montage instance to another are used to retrieve such
data. A data flow arrow defines a data link from its source to its target. If the source is an
action of some Montage instance, the link is attached to the instance. Thus the cond- labeled
data flow arrow in the example links the current instance with the instance of Expression.

The third part of the above Montage contains the restriction for this construct. In the above
example, the type for the condition must be boolean. In general, Montages have a fourth part
which contains dynamic semantic actions to be performed when control reaches the self node.

5

2.5 Informal Meaning of Montages

2.5.1 Compact Derivation Tree

A Montage specification of a language L defines an ASM ML that for a given program P of L
analyzes and defines the control and data flow, checks the static semantics, and then executes
the dynamic semantics. For each program P, there is a different initial state IP of the ASM
which encodes the syntax of P. L−programs are strings generated by a context free grammar
GL. Each program generated by GL is represented in IP as a compact derivation tree, which is
derived from a parse tree by repeatedly collapsing each node n with a single child c to a single
node with the labels of both n and c, and having only the children of c as children, until no
such nodes remain. The initial state IP associated with a program P is given by universes and
functions representing the nodes and branches of the compact derivation tree. The functions
are selector functions which are used to select nodes in some branch of the compact derivation
tree. The initial state IP contains the compact derivation tree of the program P. Because it
is possible for one node to have multiple disjoint labels such as n and c mentioned above, the
universes are not disjoint and the selector function is used to select descendants from more than
one category of nodes. Here the notation S- is used to distinguish the selector function names
from the universe function names.

After obtaining the compact derivation tree, we introduce how to generate the control and
data flow information which makes the ASM program executable during the dynamic semantics
computation. The control and data flow information is provided as attributes of the tokens after
the static analysis. These attributes are illustrated as data arrows and control arrows among
the tokens. Montages provide a way to define control and data flow starting from the syntax of
the program. When the parse tree for a program P is generated by a grammar L, each syntax
rule such as n ::= E has multiple occurrences in the tree; in particular we can imagine the
nonterminal n matching subtrees whose descendants are structured according to the right-hand
side E of the syntax rule. The root of such a subtree is a node corresponding to the left-hand
side n. Nonterminal and terminal symbols in E represent the direct descendants of that root.
Linking together these symbols results in flow arrows among internal nodes of the derivation
tree.

2.5.2 Control and Data Functions

After the static analysis phase, the dynamic semantics phase is executed. In the case of sequential
languages, exactly one action is activated, then control is passed to the next node along the
control links. In the following, we give the formal semantics of data and control arrows.

Assume that we have the following Montage for Data. A data flow arrow consists of two
Montages Src and Trg and a label t which represents a data flow. The data flow connects these
two Montages. In the compact derivation tree the arrow is instantiated for each instance of
Data with links from the root node of the source Montage Src to the root node of the target
Montage Trg. The semantics for this data flow is that we connect two nodes corresponding to
the instances of these two Montages.

6

Data ::=

Src-PATH Trg-PATH
t

∀self ∈ Data :
self.Src.t = Trg

With control arrows the situation is a little more complicated. If s is an instance of a Montage
and s does not include any other Montages, then we have the following equations for functions
Initial and Terminal:

s.Initial = s
s.T erminal = s

If s is an instance of a Montage which includes other Montages and there is an edge from I
to a Montage denoted by path tgt, then

s.Initial = s.tgt.Initial
If there is an edge from a Montage denoted by path src to T, then

s.T erminal = s.src.T erminal
Using these definitions, the structured finite state machine can be flattened. The arrows of

the flat finite state machine are given by the following equations defining the relation ControlArrow.
For each instance n of a Montage N and each edge e associated with N,

ControlArrow(e.src.T erminal, e.tgt.Initial)) = true

where src is the path of the source of e and tgt is the path of the target of e.

2.5.3 Lists

Montages also provide for the processing of lists with which most languages are concerned. If
the right hand side of a syntax rule contains a symbol enclosed in { }, a list of descendants
is generated. An additional node, called a list node, is generated as well. In order to access
the elements and needed information about the list, Montages provide an attribute ListLength
of the list node which is set to the length of the generated list and a binary infix function
[] : ListNode× Integer → Node can be used to retrieve the elements of the list. Moreover, a

function Position : Node → Nat returns the physical position of an element within a list. The
initial leaf of the list node is the initial leaf of the first element in the list, and the terminal leaf
is the terminal leaf of the last element. For the control functions defined in the list rule, the
corresponding terminal leaf of each list element is connected to the initial leaf of its successor in
the list by them.

7

For data functions related to lists, there are two special cases. One case is an arrow defined
from all the elements within a list to an outside node. In this case, we can regard the function as
a group of arrows which connect all the elements within the list to the outside node respectively.
As an example, the following Montage gives the static semantics for a list of variable declarations
in some programming language. The list is graphically represented by a box, which is labeled in
its upper right corner with the keyword LIST. The data flow arrows StaticType specifies a group
of data flow arrows, one from each variable to the node type, all labeled StaticType. In addition,
all variable objects are linked sequentially by a control function NT .

VarDec ::= Var {”,” Var } ”:” Type

LIST

S-Var S-Type
NT

StaticType
I

T

The other special case is a function defined from an outside node to the elements within
the list. In this case the data function is regarded as a set of arrows which connect the outside
node to all the elements within the list respectively by using an infix function. Let us look
at another example. The following Montage gives the semantics for a function call in some
programming language. The data function ActualParameters in the following Montage defines
a binary function ActualParameters : Node×Integer → Node which maps a call node to all the
actual parameters of this node. In order to implement the type check between the corresponding
parameters of the function call and the function definition, we would need to get the positions of
all the parameters in the function call parameter’s list. To get an actual parameter position in the
list, we can use the projection function which is defined as follows: ActualParametersPosition :
Token → Integer which gives the position number for every Expr referenced by the function
ActualParameters in the list of Expr. The semantics of the data function ActualParameters
is the following: ∀x ∈ list of Expr: self.S-Call.ActualParameters(x.Position):=x.Terminal and
x.ActualParametersPosition:=x.Position;

The projection function name of a data function, like ActualParametersPosition in the follow-
ing Montage, is generated by the data function name (ActualParameters) followed by Position.
The reason that we use the projection function is that the position of an item within a nesting
of list boxes may be relative to the source of the arrow which points to it.

8

ProcCall ::= Call ”(” [Expr {”,” Expr}] ”)”

LIST

S-Expr S-Call

NT

ActualParameters(.)

I T

2.5.4 Some notation

In order to make it easier to write our Montages, we use the following abbreviation, which can
be used to iterate over a list of nodes.

vary over ind(i,L) R(i) endvary
“L” is a list node, and “i” iterates over the indices of “L”. The elements of “L” can be

accessed using the notation “L[i]”. The above rule is equivalent to the following ASM rule:

do forall i : 1 ≤ i ≤ ListLength(L)
R(i)

enddo

3 Montages for Statements in C

3.1 Some Basic Functions

Before giving the semantics of C, we introduce the following basic functions and notations.
The constructs of C can be divided into statements, expressions, and types. In the Montages
approach, N odes are those elements which are chosen to execute the dynamic semantics for
the Montages. CV alue represents the universe of data values that can be represented in a
particular C program. A static function V alue : Nodes → CV alue indicates the value of a
node. In addition we define a function Name : Nodes → String to indicate the name for the
node.

3.2 Selection Statements

Selection statements include the if statement and switch statement. In the if statement,
the guard expression must have an arithmetic or pointer type. This restriction is implemented
by the function IsArithmeticOrPointer : Nodes → Boolean. If the guard expression com-
pares unequal to 0, the first substatement is executed. So in Figure 2, the control flow labeled
“guard.value!=0” is followed when that condition expression is true. Otherwise the substate-
ment following else is executed, which is shown in the default control flow. If the substatement

9

following else is omitted, then control will be passed to the next statement directly. Otherwise,
in both cases, control will be passed to the next statement following the if statements.

Selectedcase1 ::= ”if” ”(” Expression ”)” Statement { ”else” Statement}

S2-Statement

S-Expression o

S1-Statement
guard

guard.value!=0

self T

I

condition IsArithmeticOrPointerType(S-Expression.Terminal)=true

Figure 2: Montage for if statements.

The switch statement causes control to be transferred to one of several statements depending
on the value of an expression, which must have integral type. When the switch statement is
executed, its expression is computed and compared with each case constant. If one of the case
constants is equal to the value of the expression, control passes to the statement of the matched
case label. If no case constant matches the expression, and if there is a default label, control
passes to the labeled statement. If no case matches, and if there is no default, then none of
the substatements of the switch statement is executed.

The function SwitchTable : Nodes × CV alue → Nodes is used to indicate where control
should be directed given a node and value. In the Montage for case expressions shown in Figure
4, we set the function SwitchTable in the static part. Therefore we can direct control flow in
the Montage’s dynamic part in Figure 3 when a switch statement is met.

The semantics of the switch statement becomes complicated when there is a jump statement
within it. A break statement terminates execution of the smallest enclosing loop or switch
statement; a continue statement causes control to pass to the loop-continuation portion of the
smallest enclosing loop statement. In order to deal with smallest enclosing scope, we define
functions EnclosingCtrlSt, CurSwitchLevel : Nodes and they denote the current control level
and switch table. Functions lastCtrlStm, lastSwitchLevel : Nodes → Nodes are used to
denote the previous control level and switch table. These functions are updated before and
after the corresponding Montage is visited. In the Montage notation, we can use “-” in the
static analysis to denote the before and after actions. All the actions defined before “-” are
executed before the corresponding Montage is analyzed and all the actions defined after “-”
are executed after the Montage is reduced. If “-” is omitted, then all the actions are executed
after the Montage is reduced. In Figure 3, before the switch statement is visited we set the

10

function EnclosingCtrlSt and CurSwitchLevel to reflect the current level. And after the
switch statement is visited, we set these functions back by using functions lastCtrlStm and
lastSwitchLevel. Functions contPoint, breakPoint : Nodes → Nodes are used to denote the two
targets for a continue statement and a break statement respectively. Because we set (and reset)
these functions as we process the loop’s substatements, the Montages for those substatements
will know where to direct control flow in those situations.

The Montages for the switch statement are shown in Figures 3 & 4.

Selectedcase3 ::= ”switch” ”(” Expression ”)” Statement

S-Expression

self

I

cond

S-Statement T

lastCtrlStm := EnclosingCtrlStm
EnclosingCtrlStm := self
self.contPoint := EnclosingCtrlStm.contPoint
CurSwitchLevel := self
lastSwitchLevel := CurSwitchLevel
self.breakPoint := S-Statement.Terminal
–
EnclosingCtrlStm := lastCtrlStm
CurSwitchLevel := lastSwitchLevel

if(self.SwitchTable(cond.value)6=undef)then
CT:=self.SwitchTable(cond.value)

elseif(self.SwitchTable(”default”)6=undef)then
CT:=self.SwitchTable(”default”)

else
CT:=Self.S-Statement.Terminal

endif

Figure 3: Montage for switch statements.

11

Case ::= ”case” Expression ”:” Statement

S-StatementI T

CurSwitchLevel.SwitchTable(S-Expression.Terminal.constValue
:= S-Statement.Initial

condition (IsIntType(S-Expression.Terminal)=true)

Figure 4: Montage for case statements within switch statements.

3.3 Iteration Statements

Iteration statements include the while statement, do statement, and for statement. In order
to deal with jump statements, we set some functions associated with the instances of iteration
statements which are contPoint and breakPoint. They are used for continue statements and
break statements respectively. In addition, in order to implement the smallest enclosing scope,
we set the function EnclosingCtrlStm to denote the instance of the current smallest enclosing
iteration statements and the function lastCtrlStm : Nodes → Nodes to denote the previous
smallest enclosing iteration statements. They are dealt with in the same way as the selection
statement.

In the while statement, the substatement is executed repeatedly so long as the value of the
expression remains unequal to 0. This behavior is represented by the two control flow arrows
emerging from the node labeled “self” in the static portion of the Montage; the arrow labeled
“guard.value! = 0” is followed when that guard expression is true (i.e., when the loop should
continue), while the other arrow is followed when the guard is false.

The guard expression in the while statement must be of arithmetic or pointer type. This
restriction is given by the function IsArithmeticOrPointerType in the condition part of its
Montage. We deal with jump statements in the same way as we do for switch statements. The
Montage for the while statement is shown in the following Figure 5.

In the do statement, the substatement is executed repeatedly so long as the value of the
expression remains unequal to 0; the expression must have have arithmetic type or pointer type.
And the test occurs after each execution of the statement. The Montage for the do statement
is shown in Figure 6.

In the for statement, the first expression is evaluated once, and thus specifies initialization
for the loop. The second expression must have arithmetic or pointer type; it is evaluated
before each iteration, and if it becomes equal to 0, the for statement is terminated. The third
expression is evaluated after each iteration, and thus specifies a re-initialization for the loop.
The Montage for the for statement is shown in Figure 7.

12

whilestatement ::= ”while” ”(” Expression ”)” Statement

S-Expression self

S-Statement

I
guard.value!=0

guard

T

lastCtrlStm := EnclosingCtrlStm
EnclosingCtrlStm := self
self.breakPoint := self.Terminal
self.contPoint := S-Expression.Initial
–
EnclosingCtrlStm := lastCtrlStm

condition IsArithmeticOrPointerType(S-Expression.Terminal)=true

Figure 5: Montage for while statements.

Dostatement ::= ”do” Statement ”while” ”(” Expression ”)” ”;”

S-Statement S-Expression selfI

guard.value!=0

guard
T

lastCtrlStm := EnclosingCtrlStm
EnclosingCtrlStm := self
self.breakPoint := self.Terminal
self.contPoint := S-Expression.Initial
–
EnclosingCtrlStm := lastCtrlStm

condition IsArithmeticOrPointerType(S-Expression)=true

Figure 6: Montage for do statements.

13

Forstatement ::= ”for” ”(” Expressionopt ”;” Expressionopt ”;” Expressionopt ”)”
Statement

S1-Expressionopt S2-Expressionopt

S3-Expressionopt S-Statement

selfI

guard.value!=0

guard

T

lastCtrlStm := EnclosingCtrlStm
EnclosingCtrlStm := self
self.breakPoint := self.Terminal
self.contPoint := S3-Expressionopt.Initial
–
EnclosingCtrlStm := lastCtrlStm

condition IsArithmeticOrPointerType(S2-Expressionopt.Terminal)=true

Figure 7: Montage for for statements.

3.4 Jump Statement

The jump statements include the following four forms: the goto statement, the continue state-
ment, the break statement and the return statement.

A continue statement may appear only within an iteration statement. It causes control to
pass to the loop-continuation portion of the smallest enclosing such statement. In the Montages
for the iteration statement, we set the function contTarget to denote the node to which the
continue statement jumps by using the function contPoint. Here the function EnclosingCtrlStm
is used to denote the smallest enclosing iteration statement. In the dynamic semantics part of the
Montage we direct control to the corresponding node by CT := continueTarget. The Montage
for continue statements is shown in Figure 8.

A break statement may appear in an iteration statement or a switch statement, and termi-
nates execution of the smallest enclosing such statement; control passes to the statement follow-
ing the terminated statement. In the Montages for the iteration statement, we set the function
breakTarget to denote the node to which the break statement jumps. Like the Montage for the
continue statement, in the dynamic semantics part, we direct control to the corresponding node
by CT := breakTarget. In addition, we set the guard value for the current smallest enclosing
iteration statement to 0 so that we can exit from the current iteration statement. The Montage
for break statements is shown in Figure 9.

In the goto statement, the identifier must be a label located in the current function. Control
transfers to the labeled statement. We direct control to the appropriate node by using function

14

Contstatement ::= ”continue” ”;”

selfI o T

continueTarget := EnclosingCtrlStm.contPoint
–

CT := continueTarget

Figure 8: Montage for continue statements.

Breakstatement ::= ”break” ”;”

selfI
o T

breakTarget := EnclosingCtrlStm.breakPoint
–

CT := breakTarget
breakTarget.guard.value := 0

Figure 9: Montage for break statements.

15

gotoTarget : Nodes → Nodes. The Montage for the goto statement is shown in Figure 10.

Gotostatement ::= ”goto” Identifier ”;”

self

o

I

T

scope := CurFunc

CT := self.gotoTarget

Figure 10: Montage for goto statements.

4 Expressions

4.1 Some New Functions and a Macro

The universe address comprises the positive integers, which is used to model memory. In order
to access the memory address corresponding to a variable, we define a new partial function
var2memory : Nodes → address which is used to set up the relation between a variable and its
location in memory.

A static function typelength : Nodes → Integer indicates how many bytes are used by a
particular value type in memory. A dynamic function MemoryByteV alue : address → bytes
indicates the values stored in memory at a given address. Since most values of interest are larger
than one byte, we need a means for storing members of CValue as individual bytes.

A static partial function ByteToResult: Nodes×byten → CValue converts the memory repre-
sentation of a value of the specified basic type into its corresponding value in the CValue universe.
Here n is the maximum number of bytes used by the memory representation of any particular
basic type (and is implementation-dependent). For types whose memory representations are less
than n bytes in length, we ignore any unused parameters.

A static partial function ResultToByte : CV alue × Integer × Nodes → byte yields the
specified byte of the memory representation of the specified value from the specified universe.
This function is the inverse of ByteToResult.

In order to get the value of the specified type being stored in memory starting at the in-
dicated address easily, we define an abbreviation GetMemoryValue:address× Nodes→ CValue.
GetMemoryValue(addr, type) abbreviates ByteToResult(type,MemoryByteValue(addr), Memo-
ryByteValue (addr+1),. . . , MemoryByteValue (addr+length(type)-1)).

16

Because we use the byte to model memory, the rules for assignment to memory are a little
complicated because a given assignment may require an arbitrary large number of updates to
the MemoryByteV alue function. We use do-forall rules which perform a those arbitrary large
number of updates in a systematic fashion. The number of updates is decided by the variable’s
type length, which is given by the function staticType : Node → Integer. The transition rule
for copying to memory is shown in the following:

AssignMemory(var,value)

do forall i: 0 ≤ i ≤ length(var.StaticType) − 1
MemoryByteValue(var.var2memory+i):=

ResultToByte(value, i, var.staticType);
enddo

4.2 Comma Operator

A comma expression has the following form,

comma-expression → expr1, expr2

where expr1 and expr2 are expressions.
In a comma expression, the type and value of the result are the type and value of the right

operand. The Montage for comma expressions is shown in Figure 11.

commaexp ::= expr1 ”,” expr2

S-expr1 S-expr2 selfI T

right

staticType:=S-expr2.Terminal.staticType

value := right.value

Figure 11: Montage for comma expressions.

4.3 Assignment Expression

A simple assignment has the following form:

17

assignment-expression → expr1 = expr2

where expr1 and expr2 are expressions. To evaluate a simple assignment expression, copy the
value of epxr2 into the memory location given by expr1, returning that value as the value of the
whole assignment expression.

In assignment expressions, the left operand must be an lvalue. It must not be an array, and
it must not have an incomplete type, or be a function. The type of the result is that of its left
operand. And the value is the value stored in the left operand after the assignment has taken
place. This is implemented in the function CompareType, which is given in the Appendix.

In addition, the evaluation order of subexpressions is not decided in most C expressions. In
order to implement this, we define a new function leftfirst: Boolean. If leftfirst is true then the
left subexpression is evaluated first; otherwise the right subexpression is evaluated first.

A special case in handling assignment statements occurs when the right-hand expression in
the statement represents the name of an array rather than a variable name; in such situations,
we need a different value to be computed by the subexpressions in order to complete the op-
eration. The function onlyArrayNameV isited : Node → Boolean is used to denote whether
this case has occurred; the value of this function is used by other Montages while evaluating the
subexpression in order to generate the correct value. More details about this can be found in
primary expressions. The Montage for assignment expressions is shown in Figure 12.

Within C, there are other assignment operators (“+=”, “*=”, etc.) which perform a math-
ematic operation on the value of expr2 and the value stored in the memory location given by
expr1. The result is copied into the memory location given by expr1. Most these assignment
operators have Montages like that shown in Figure 13.

The two exceptions are the additive and subtractive assignment operators, “+=” and “-=”.
Here we use “+=” to illustrate these two cases. One is to add an integer i to a pointer expression
p, with the result being a pointer which is i units forward in memory from p. The other is to add
two values. These two cases are handled by the macro Add(op1, op2, opname), which is given in
the Appendix. The additive assignment expression is shown in Figure 14.

4.4 Conditional Expressions

A conditional expression has the following form:

conditional-expression → expr1 ? expr2 : expr3

To evaluate a conditional expression, evaluate expr1. If the resulting value is non-zero,
evaluate expr2 and set its value to the value of the whole conditional expression, otherwise
evaluate expr3 and set its value to the value of the whole conditional expression. Only one of
the second and third operands is evaluated. If the second and third operands are arithmetic, the
usual arithmetic conversions are performed to bring them to a common type, and that is the type
of the result. This conversion is given by the function ConvertName : Nodes×Nodes → Nodes.
If both are void, or structure or unions of the same type, or pointers to objects of the same

18

assignmentexp ::= expr1 Assignop expr2
Assignop = ”=”

o
S-expr1

S-expr2

selfI

leftfirst

leftfirst
leftfirst

var

expr

T

staticType := S-expr1.Terminal.staticType
if ((Primaryid(S-expr2)=true) and (S-expr2.Terminal.staticType.arrayType=true)) then

S-expr2.onlyArrayNameVisited := true
else

S-expr2.onlyArrayNameVisited := false
endif

condition (CompareType(S-expr1.Terminal,S-expr2.Terminal,S-Assignop.Name)=true) and
(S-expr1.Terminal.lvalue=true))

value := self.expr.value
AssignMemory(self.var, self.expr.value)

Figure 12: Montage for assignment expressions.

19

multiassignexp ::= expr1 Assignop expr2
Assignop = ”*=”

o
S-expr1

S-expr2

selfI

leftfirst

leftfirst
leftfirst

var

expr

T

staticType := S-expr1.Terminal.staticType

condition (CompareType(S-expr1.Terminal,S-expr2.Terminal,S-Assignop.Name)=true) and
(S-expr1.Terminal.lvalue=true))

value := expr.value * GetMemoryValue(var.var2memory, var.staticType)
AssignMemory(var, expr.value * GetMemoryValue(var.var2memory, var.staticType))

Figure 13: Montage for multiplicative assignment expressions.

20

addassignexp ::= expr1 Assignop expr2
Assignop = ”+=”

o
S-expr1

S-expr2

selfI

leftfirst

leftfirst
leftfirst

var

expr

T

staticType := S-expr1.Terminal.staticType

condition (CompareType(S-expr1.Terminal,S-expr2.Terminal,S-Assignop.Name)=true) and
(S-expr1.Terminal.lvalue=true))

value := Add(var, expr, ”+”)
AssignMemory(var, Add(var, expr, ”+”))

Figure 14: Montage for additive assignment expressions.

21

type, the result has the common type. If one is a pointer and the other the constant 0, the 0 is
converted to the pointer type, and the result has that type. If one is a pointer to void and the
other is another pointer, the other pointer is converted to a pointer to void, and that is the type
of the result. All of this is performed by the macro CheckConditions defined in the Appendix.
The Montage for the conditional expression is shown in Figure 15.

conditionexp ::= expr1 ”?” expr2 ”:” expr3

S-expr1

S-expr2

S-expr3

o selfI

cond.value!=0 first

second

T

cond

staticType := ConvertName(S-expr2.Terminal,S-expr3.Terminal)

condition CheckConditions(S-expr2.Terminal,S-expr3.Terminal)=true

if(cond.value6=0)then
value := first.value

else
value := second.value

endif

Figure 15: Montage for Condition Expressions.

4.5 Logical OR Expression

A logical OR expression has the following form:

logical-or-expression → expr1 ‖ expr2

where expr1 and expr2 are expressions. To evaluate a logical OR expression, start by evaluating
expr1. If the result is non-zero, the value of the logical OR expression is 1 and expr2 is not
evaluated. Otherwise, the value of the logical OR expression is the value of expr2, with non-zero
values coerced to 1. The operands need not have the same type, but each must have arithmetic
type or be a pointer. The result type is int. The Montage for logical or expressions is shown in
Figure 16.

The logical AND expression returns 1 if both operands compare unequal to zero, 0 otherwise.
The first operand is evaluated, and if it is equal to 0, the value of the expression is 0. Otherwise,
the right operand is evaluated, and the value of the result is given by the value of the right

22

orexp ::= expr1 ”||” expr2

S-expr1 S-expr2o selfI
left.value!=0

right

left

T

staticType := IntNode

condition (IsArithmeticOrPointerType(S-expr1.Terminal)=true) and
(IsArithmeticOrPointerType(S-expr2.Terminal)=true)

if(left.value 6=0) or (right.value6=0) then
value := 1

else
value := 0

endif

Figure 16: Montage for logic or expressions.

23

operand. Both operands’ type must have arithmetic type or a pointer. The result type is int.
The Montage for logic and expressions is shown in Figure 17.

andexp ::= expr1 ”&&” expr2

S-expr1 S-expr2o selfI

right

left.value=0
left

T

staticType := IntNode

condition (IsArithmeticOrPointerType(S-expr1.Terminal)=true) and
(IsArithmeticOrPointerType(S-expr2.Terminal)=true)

if(left.value=0) or (right.value=0) then
value := 0

else
value := 1

endif

Figure 17: Montage for logic and expressions.

4.6 Equality Expressions

An equality expression has the following forms:

equality-expression == relational-expression
equality-expression ! = relational-expression

The equality expression is analogous to the relational expression except for their lower prece-
dence. It follows the same rules as the relation expression, but permits additional possibilities:
a pointer may be compared to a constant integral expression with value 0, or to a pointer to
void.

The function constV alue : Nodes → CV alue is used to denote a constant value which is
computed during the static analysis. The Montage for equality expressions is shown in Figure
18 and the Montage for non-equality expressions can be given in a similar way.

24

Equality ::= Equalityexp EqOp Relationexp
EqOp = ”==”

o

S-Equalityexp

S-Relationexp

selfI

leftfirst
leftfirst

leftfirst
T

left

right

staticType := IntNode
if (S-Equalityexp.Terminal.constValue=S-Relationexp.Terminal.constValue) then

constValue := 1
else

constValue := 0
endif

condition ((IsArithmeticType(S-Equalityexp.Terminal.staticType)=true) and
(IsArithmeticType(S-Relationexp.Terminal.staticType)=true)) or
(CheckPointStruct(S-Equalityexp.Terminal,S-Relationexp.Terminal)=1)

if(left.value = right.value) then
value := 1

else
value := 0

endif

Figure 18: Montage for equality expressions.

25

4.7 General Mathematical Expressions

There are many mathematical expressions in C involving binary operators (“*”,“+”,“−”, etc.)
whose behaviors are similar. (We treat the bit-wise operators (e.g.,|,&) as ordinary mathemat-
ical operators.) To evaluate one of these expressions, evaluate both operand expressions and
apply the appropriate function. We present the Montage for multiplication in the following as
a representative of this category of expressions.

The operands of * and / must have arithmetic type; the operands of % must have integral
type. The function IsMultiOpType : String×Nodes×Nodes → Boolean in the condition part
is used to implement this restriction. The definition for this function is given in the Appendix.
The result type of the expression is given by the usual arithmetic conversions on operands, which
is given by the function ConvertName. The Montage for Multiplicative expressions is shown in
Figure 19.

multiexp ::= expr1 MultiOp expr2
MultiOp = ”*”

o

S-expr1

S-expr2

selfI

leftfirst

leftfirst

leftfirst

left

right

T

staticType := ConvertName(S-expr1.Terminal, S-expr2.Terminal)
constValue := S-expr1.Terminal.constValue * S-expr2.Terminal.constValue

condition IsMultiOpType(S-MultiOp.Name, S-expr1.Terminal, S-expr2.Terminal)=1

value := left.value * right.value

Figure 19: Montage for multiplication expressions.

Now we consider additive expressions. If the operands have arithmetic type, the usual
arithmetic conversions are performed. The result type for the additive expression is the type for
the arithmetic conversions. In addition, there are some additional type possibilities for each of
the operands.

The result of the “+” operator is the sum of the operands. If a pointer to an object in an
array and a value of any integral type are added, then the latter is converted to an address offset

26

by multiplying it by the size of the objects to which the pointer points. The result type for the
result expression is still a pointer to an object in an array.

The result of the “-” operator is the difference of the operands. A value of any integral
type may be subtracted from a pointer, and the same conversion and conditions as for addition
apply. In addition, two pointers to objects of the same type may be subtracted; the result is an
integral value representing the displacement between the pointed-to objects. The type of the
result depends on the implementation, which is given by the function Subimptype : Nodes. The
Montage for additive expressions is shown in Figure 20.

4.8 Mathematical Unary Operators

Unary operator expressions have one of the following forms:

unary-expression → + expression
unary-expression → − expression
unary-expression → ~ expression
unary-expression → ! expression

Evaluating these expressions takes a form similar to that for binary mathematical operators
and all the unary operators’ computations are similar. For logical negation expressions, the
result type is int; otherwise the result type is decided by the type of subexpressions.

The operand of the unary minus operator must have arithmetic type, and the result is the
negative value of the operand. We present the Montage for the negation operator in Figure 21;
the other Montages can be given in a similar way.

4.9 Casting Expression

A unary expression preceded by the parenthesized name of a type causes conversion of the value
of the expression to the named type:

cast-expression → (type-name) expression

In order to implement the conversion from the old type to the new type, we define a new
function ConvertV alue : CV alue × Node → CV alue. So the Montage for the cast expression
is shown in Figure 22.

4.10 Pre-Increment and Pre-Decrement expression

A pre-increment or pre-decrement expression has the following form:

pre-incr-expression → ++ expression
pre-decr-expression → −− expression

27

addexp ::= expr1 AddOp expr2
AddOp = ”+” |”-”

o self

S-expr1

S-expr2

I

leftfirst

leftfirst

leftfirst

left

right

T

if(((S-expr1.Terminal.staticType.pointType=true) or
(S-expr1.Terminal.staticType.arrayType=true)) and
(S-expr2.Terminal.staticType.Name=”int”))then
staticType:=S-expr1.Terminal.staticType

elseif(((S-expr2.Terminal.staticType.pointType=true) or
(S-expr2.Terminal.staticType.arrayType=true)) and

(S-expr1.Terminal.staticType.Name=”int”)) then
staticType:=S-expr2.Terminal.staticType

elseif((S-AddOp.Name=”-”) and ((S-expr1.Terminal.staticType.pointType=true) or
(S-expr1.Terminal.staticType.arrayType=true))

and ((S-expr2.Terminal.staticType.pointType=true) or
(S-expr2.Terminal.staticType.arrayType=true))) then

staticType := Subimptype(self)
else

staticType := ConvertName(S-expr1.Terminal,S-expr2.Terminal)
endif
constValue := S-expr1.Terminal.constValue + S-expr2.Terminal.constValue

condition CompareArithType(S-expr1.Terminal,S-expr2.Terminal,S-AddOp.Name)=true

value := Add(left, right, AddOp.Name)

Figure 20: Semantics for addition expressions.

28

unaryexp ::= UnaryOp expression
UnaryOp = ”-”

S-expression selfI T

expr

staticType := S-expression.Terminal.staticType
constValue := -(S-expression.Terminal.constValue)

condition IsArithmeticOrPointerType(S-expression.Terminal)=true)

value := -expr.value

Figure 21: Semantics of minus operator.

castexp ::= ”(” Typename ”)” expression

S-expression selfI T

expvalue

staticType := S-Typename.Terminal

value := ConvertValue(expvalue, S-Typename.Terminal)

Figure 22: Semantics for cast expressions.

29

To evaluate a pre-increment expression, increment the value stored at the indicated memory
location by one and store the new value into that memory location; the incremented value is the
value for the whole expression. The operand must be an lvalue and the result is not an lvalue.
The Montage for the prefix incrementation expression is shown in Figure 23.

preincexp ::= PreIncOp expression
PreIncOp = ”++”

S-expression selfI T

prec

staticType := S-expression.Terminal.staticType
lvalue := false

condition (S-expression.Terminal.lvalue=true) and
(IsArithmeticOrPointerType(S-expression.Terminal)=true)

value := Incdec(prec,”++”)
AssignMemory(prec,Incdec(prec,”++”))

Figure 23: Semantics for prefix incrementation expressions.

4.11 Post-Increment and Post-Decrement Expressions

A post-increment or post-decrement expression has the following form:

post-incr-expression → expression ++
post-decr-expression → expression −−

Post-increment expressions are handled in the same manner as pre-increment expressions ex-
cept that the sequence of operations is reversed: i.e., the value of the whole expression is obtained
before the incrementing takes place. So we get value by using the function GetMemoryV alue
and increment the memory value by 1 using the macro Add in the dynamic part of the following
Montage. The operand must be an lvalue. The result is not an lvalue. The Montage for postfix
incrementation expressions is shown in Figure 24.

30

postincexp ::= expression ”++”

S-expressionI self T

prec

staticType:=S-expression.Terminal.staticType
lvalue := false

condition (S-expression.Terminal.lvalue=true) and
(IsArithmeticOrPointerType(S-expression.Terminal)=true)

AssignMemory(prec,Incdec(prec.var2memory, ”++”))
value := GetMemoryValue(prec.var2memory, prec.staticType)

Figure 24: Semantics for postfix incrementation expressions.

4.12 Address

The address expression has the following form:

addr-exp : → & expr1

where expr1 is an expression. The & operator in C passes back as its result the address of
the memory location given by the argument expression.

The Montage for the address expression is shown in the following. The condition of the
Montage guarantees that the expression should be an lvalue which means that it refers to a
location in memory or a function type.

The unary & operator takes the address of its operand. The operand must be an lvalue or
must be of function type. The result is a pointer to the object or function referred to by the
lvalue. If the type of the operand is T, the type of the result is “pointer to T”. The Montage
for address expressions is shown in Figure 25.

4.13 Indirection Expression

The unary ? operator denotes indirection, and returns the object or function to which its operand
points. It is an lvalue if the operand is a pointer to an object of arithmetic, structure, union
or pointer type. If the type of the expression is “pointer to T”, the type of the result is T.
In the dynamic part, for a function call we need to distinguish two cases: one is that in the
corresponding function definition the return type for that function is a pointer; and the other

31

addressexp ::= ”&” expression

S-expression selfI T
prec

S-”&”.staticType:=S-expression.Terminal.staticType
staticType := S-”&”
S-”&”.pointType := true
S-”&”.typelength := POINTERLENGTH

condition S-expression.Terminal 6=undef and
((S-expression.lvalue=true) or (S-expression.Terminal.funvarType=true))

var2memory := prec.var2memory
value := prec.var2memory

Figure 25: Montage for address expression.

is the return type, which is not a pointer. Because of the conversion rule for the functions in
C, the indirection expressions can be used for the above two function definitions. Therefore, we
deal with these two cases in the dynamic part in the Montage. The Montage for indirection
expressions is shown in Figure 26.

4.14 Primary Expressions

An identifier is a primary expression, if it has been declared as a variable before. Its type is
specified by its declaration. An identifier is an lvalue if it refers to an object whose type is
arithmetic, structure, union, or pointer. In the static part of the Montage, we use d to denote
the object declared in the variable declaration.

In the dynamic part of the Montage, we need to distinguish several cases. If this identifier
refers to an array name or a function name, we need to set the value and var2memory to the same
corresponding variable address (var2memory) because an expression of type “function returning
T” is converted to “pointer to function returning T”. Otherwise, we treat the identifier as usual,
setting the value and var2memory to the ones corresponding to the variable declaration. The
Montage for primary variables is shown in Figure 27.

A postfix expression followed by an expression in square brackets is a postfix expression
denoting a subscripted array reference. One of the two expressions must have type “pointer
to T”, where T is some type, and the other must have integral type; the type of the subscript
expression is T. The Montage for array variables is shown in Figure 28.

A postfix expression followed by a dot followed by an identifier is a postfix expression. The
first operand expression must be a structure or a union, and the identifier must name a member
of the structure or union. The value is the named member of the structure or union, and its

32

Starexp ::= ”*” Castexp

S-Castexp selfI T

prec

if(S-Castexp.Terminal.decl.funvarType=true)then
staticType:=S-Castexp.Terminal.staticType
else
staticType:=S-Castexp.Terminal.staticType.staticType
endif
if(S-Castexp.Terminal.staticType.staticType.funvarType6=true)then

lvalue := true
else

lvalue := false
endif

condition (S-Castexp.Terminal.staticType.pointType=true)or(S-Castexp.Terminal.decl.funvarType=true)

if(MemoryValue(prec.var2memory).AddrToFunc6=undef)then
value := prec.value – for *funcname

elseif IsPointerToFun(prec)=true then
var2memory:=prec.var2memory
value :=GetMemoryValue(prec.var2memory,prec.staticType)

else
var2memory := GetMemoryValue(prec.var2memory,prec.staticType)
value := GetMemoryValue(GetMemoryValue(prec.var2memory,prec.staticType),prec.staticType.staticType)

endif

Figure 26: Montage for indirection expressions.

33

Primaryid = Identifier

selfI T

let d = LookUp(Name) in
staticType := d.staticType
decl := d

endlet
lvalue := true

condition LookUp(Name) 6= undef

if(onlyArrayNameVisted=true) or (decl.funvarType = true) then
value := decl.var2memory
var2memory := decl.var2memory

else
if(GetMemoryValue(decl.var2memory,decl.staticType) 6=undef)then

value := GetMemoryValue(decl.var2memory,staticType)
else

value := undef
endif
var2memory := decl.var2memory

endif

Figure 27: Montage for primary variables.

34

Postarray ::= Postfixexp ”[” Expression ”]”

S-Postfixexp S-Expression selfI T

if(S-Postfixexp.Terminal.staticType.arrayType=true) or
(S-Postfixexp.Terminal.staticType.pointType=true) then

staticType:=S-Postfixexp.Terminal.staticType.staticType
offset := S-Expression.Terminal
base := S-Postfixexp.Terminal

else
staticType := S-Expression.Terminal.staticType.staticType
offset := S-Postfixexp.Terminal
base := S-Expression.Terminal

endif
lvalue := true

condition CheckArray(S-Postfixexp,S-Expression)=true

if(base.staticType.arrayType=true) then
var2memory := base.var2memory + (staticType.typelength * offset.value)
value:=

GetMemoryValue((base.var2memory+(staticType.typelength * offset.value)),staticType)
elseif base.staticType.pointType=true then

var2memory := GetMemoryValue(base.var2memory,base.staticType)
+ (staticType.typelength * offset.value)

value := GetMemoryValue((GetMemoryValue(base.var2memory,base.staticType)
+ (staticType.typelength * offset.value)),staticType)

endif

Figure 28: Montage for array variables.

35

type is the type of the member. The expression is an lvalue if the first expression is an lvalue,
and if the type of the second expression is not an array type. The Montage for this structure
references is shown Figure 29.

Postdot ::= Postfixexp ”.” Identifier

S-Postfixexp selfI T

prec

staticType:= S-Postfixexp.Terminal.staticType.fieldPos(S-Identifier.Name).staticType
if(S-Postfixexp.Terminal.staticType.fieldPos(S-Identifier.Name).staticType.arrayType6=true)then

lvalue := true
endif

condition S-Postfixexp.Terminal.staticType.fieldPos(S-Identifier.Name).staticType6=undef

var2memory := prec.var2memory +
prec.staticType.fieldPos(S-Identifier.Name).offset

value:=GetMemoryValue(prec.var2memory+prec.staticType.fieldPos(S-Identifier.Name).offset,staticType)

Figure 29: Montage for structure variables.

A postfix expression followed by an arrow followed by an identifier is a postfix expression.
The first operand expression must be a pointer to a structure or a union, and the identifier
must name a member of the structure or union. The result refers to the named member of
the structure or union to which the pointer expression points, and the type is the type of the
member; the result is an lvalue if the type is not an array type. The Montage for structure
variables with a pointer is shown in Figure 30.

5 Type and Variable Declaration

Before we give the semantics for variables, we discuss types in C in the following.

5.1 Types

There are many kinds of types in C which include the ground types, structure or union type and
others. Ground types contain all the basic types including char, short, int, long, float,
double singed, and unsinged. The semantics for all these ground types are similar and they
are shown in the following Montage. We set the length for every type in C by using the function
ComputeTypeLength : Nodes → Integer. The Montage for primitive types is shown in Figure
31.

36

Poststruct ::= Postfixexp ”->” Identifier

S-Postfixexp selfI T

prec

staticType:=S-Postfixexp.Terminal.staticType.staticType.fieldPos(S-Identifier.Name).staticType
if(S-Postfixexp.Terminal.staticType.staticType.fieldPos(S-Identifier.Name).staticType.arrayType6=true)then

lvalue := true
endif

condition S-Postfixexp.Terminal.staticType.staticType.fieldPos(S-Identifier.Name).staticType6=undef

var2memory:=GetMemoryValue(prec.var2memory, prec.staticType)
+ prec.staticType.staticType.fieldPos(S-Identifier.Name).offset

value:=GetMemoryValue(GetMemoryValue(prec.var2memory, prec.staticType)
+ prec.staticType.staticType.fieldPos(S-Identifier.Name).offset, staticType)

Figure 30: Semantics of structure variables with a pointer.

Primitivetype = ”int” |”char” |”short” |”void” |”long”
|”float” |”double” |”signed” |”unsigned”

typelength := ComputeTypeLength(self)
Initial := self
Terminal := self

Figure 31: Semantics of primitive types.

37

The other types of C are more complicated. The structure type consists of a sequence of
named members of various types. For brevity, these members are called fields of the structure
type. The names of members may not conflict with each other. The condition of the Montage
for the struct type guarantees this restriction. In order to access the fields of the structure,
we define a new function field : Nodes × String → Nodes. For every node associated with a
structure and a field name, the function field gives the corresponding field node.

In the static analysis part of the Montage for structure types, we define two new external
functions. One is AllocateF ield : token → address, which is used to indicate the field’s relative
offset in the structure. The other is AllocateLength : Nodes → Integer which is used to give
the total length for this structure when a variable with this type is declared. By using these two
functions, the static analysis sets the offset for every field for the structure type and the total
length for this type. The new function offset: Nodes → Integer indicates the offset for every
field in this structure type. The Montage for structure types is shown in Figure 32.

We define the function incomplete : Nodes → Boolean so that an incomplete type in
structure type can be dealt with. When an instance for the Montage of incomplete struc-
tures is met, we first check whether this structure is defined before. If it is not, we set the
function incomplete for the nodes denoting this structure and the outside structure to be true
if exists. The Montage for “incomplete” structure types is shown in Figure 33.

The union type is similar to the structure type but it contains any one of several members
of various types at different times. It may be thought of as a structure all of whose members
begin in offset 0 and whose size is sufficient to contain any of its members. The static analysis
of the Montage for union type sets the length for this union type by using the external function
AllocateLength. Similarly, the condition of the Montage for union type guarantees that all the
field names do not conflict with each other. The Montage for union types is shown in Figure 34.

5.2 Variable Declaration and Initialization

Before we use a variable we need to declare it. C distinguishes between so-called static variables
and other variables. The difference between static and non-static variables arises when control
is passed to the declaration for a variable. If the variable is not static, new memory is always
allocated to the variable and its initializing expression (if it exists) is evaluated with the value
of the expression being assigned to the new memory location. If the variable is static, then
the above allocation and initialization is performed only the first time that the declaration is
executed; should the declaration become the focus of control again, the same memory segment
is allotted to the variable.

5.2.1 Non-static Variable Declaration

The Montage for non-static variable declarations is shown in Figure 35. The condition of the
Montage guarantees that the new variable name is not multiply defined. In order to set up the
relation between the variable name and its corresponding node represented in the Montage, we
define a new function declTable : Nodes × String → Nodes.

38

struct type ::= ”struct” ”{” [FieldDecl { ”;” FieldDecl }] ”}”
FieldDecl = type FieldVar {”,” FieldVar }
FieldVar = Ident

self

LIST

S-FieldDecl

LIST

S-FieldVar S-type

T

StaticType
I

CurStruct := self
lastStruct := CurStruct
–
CurStruct := lastStruct
vary over ind(i, self.S-FieldDecl)

vary over ind(j, self.S-FieldDecl[i].S-FieldVar)
self.S-FieldDecl[i].S-FieldVar[j].offset:=

AllocateField(self.S-FieldDecl[i].S-FieldVar[j]);
endvary

endvary
length:=AllocateLength(self);
vary(s, self.S-FieldDecl.S-FieldVar)

field(self,s.String):=s;
endvary

condition vary(d1, self.S-FieldDecl.S-FieldVar)
vary(d2, self.S-FieldDecl.S-FieldVar)

d1 6= d2 implies d1.Name 6= d2.Name
endvary endvary

Figure 32: Semantics of structure types.

39

incomStruct ::= ”struct” Identifier

selfI T

if(LookUp(S-Identifier.Name) = ”undef”)then
incomplete := true
if CurStruct 6= undef then

CurStruct.incomplete := true
endif

endif

Figure 33: Semantics of “incomplete” structure types.

The dynamic semantics first checks whether an initializing expression exists. If it exists but
is not evaluated, then the control is passed to the initializing expression to compute the value for
the expression. Then the dynamic semantics allocates the memory for this variable by using the
new external function AllocateMem and assigns the initializing expression’s value (if exists) to
the corresponding memory. The Montage for non-static variable declarations is shown in Figure
35.

5.2.2 Static Variable Declaration

If the variable is static, the above allocation and initialization is performed only the first time
that the declaration is executed; should the declaration become the focus of control once again,
the same memory segment is allotted to the variable.

The condition of the Montage for static variable declarations is similar to that for non-static
variable declaration. We define a new function visited : Nodes → Boolean to indicate whether
this variable declaration has been visited before. The function visited is initially set to be
false. If the variable has not been visited, it will allocate the new memory address for the new
static variable by using the external function AllocateMem. Otherwise because the var2memory
function for this node has contained the address for the static variable, nothing further needs
to be done and the dynamic semantics transfers control to the next node. The Montage for
static variable declarations is shown in Figure 36.

5.2.3 Array Declaration

Array variables are flexible in C, which can be treated as pointer variables. When a variable is
declared, if the constant expression in the dimension in an array is missing, then the array is an

40

union type ::= ”union” ”{” [FieldDecl { ”;” FieldDecl }] ”}
FieldDecl = type FieldVar {”,” FieldVar }
FieldVar = Ident

self

LIST

S-FieldDecl

S-FieldVar S-type

T

StaticType

LIST

I

CurStruct :=self
lastStruct := CurStruct
-
CurStruct := lastStruct
vary over ind(i,self.S-FieldDecl)

vary over ind(j,self.S-FieldDecl[i].S-FieldVar)
self.S-FieldDecl[i].S-FieldVar[j].offset:=0;

endvary
endvary
length := AllocateLength(self);
vary(s, self.S-FieldVar)

field(self, s.String):=s;
endvary

condition vary(d1, self.S-FieldDecl.S-FieldVar)
vary(d2, self.S-FieldDecl.S-FieldVar)

d1 6= d2 implies d1.Name 6= d2.Name
endvary endvary

Figure 34: Semantics for union types.

41

non decl ::= type direct decl [”=” exp]
direct decl = Ident

S-type

S-exp

selfo

S-direct decl

I T

var

expr

declTable(self.S-Ident.Name):=self.S-direct decl;
self.S-direct decl.staticType := S-Type.Terminal;

condition declTable(self.S-Ident.Name)=undef

var.var2memory := CurMemoryPos
CurMemoryPos := AllocateMem(CurMemoryPos,var.staticType.typelength)
var.value := expr.value
AssignMemory(var,expr.vlaue)

Figure 35: Semantics of non-static variable declarations.

42

static decl ::= ”static” type direct decl [”=” exp]
direct decl = Ident

S-type

S-exp

self

S-direct decl

oI

expr

var

T

declTable(self.S-Ident.Name):=self.S-direct decl;
self.S-direct decl.visited:=false;
S-direct decl.staticType:= S-type.Terminal;

condition declTable(self.S-Ident.name)=undef

if(var.visited=false)then
if(expr.value6=undef)then

var.var2memory := CurMemoryPos;
CurMemoryPos := AllocateMem(CurMemoryPos,var.staticType.typelength);
AssignMemory(var, expr.value);
var.value := expr.value;

endif
var.visited=true;

endif

Figure 36: Semantics of static variable declaration.

43

incomplete type. For a complete array variable, the size for the array variable is known.
Before we give the semantics for array variables, let us consider the following example first

to see how we compute the length for a variable:

int d[3][5];

and we assume that an integer takes 4 bytes in the memory.
In order to name the nodes in Figure 37 easily, the above strings d, [3][5], [3] and [5] represent

the nodes for the corresponding Montages. Now we show how to compute the length for every
node. Here we adopt the inherited attribute to compute the function typelength for every node.
Before the root node is analyzed, we set the typelength for the node [3][5] to be 4, which is
shown in step 1. When a node [3][5] is analyzed, the function typelength for node [3] is set to 1
and the function typelength for node [5] is set to 4, which is shown in step 2 and 3. After the
node for [3] is reduced, the function typelength for it is 3, shown in step 4; and after the node
for [5] is reduced, the typelength for it 20, shown in step 5. And after the node [3][5] is analyzed,
the typelength for it is 3× 20 = 60, shown in step 6. The whole process for this computation is
shown in Figure 37.

Directarry

Directdecl
d

Dimension
[3]

MultiDimensions
Dimension

[5]

1. typelength=4

3. typelength=4

2. typelength=1
4. typelength=3

6. typelength=60

5. typelength=20

MultiDimensions
[3][5]

Figure 37: The Procedure for computing the function typelength.

In order to implement array variable declarations, we give the following Montages. In the
next two Montages, we set the function staticType for the node associated with the array name
and the node associated with the terminal node in MultiDimensions respectively. And if the
array is incomplete in the node associated with MultiDimensions then we set incomplete for
the node associated with array name. The Montage for array variable declarations is shown in
Figure 38.

Now we consider how to deal with multiple dimensions. We treat the function typelength
as an inherited attribute. Before an instance for the Montage of Dimensions is analyzed, we

44

Directarray ::= Directdecl MultiDimensions

S-Directdecl selfI T

S-Directdecl.Initial.arrayflag := true
–
S-Directdecl.Terminal.staticType := S-MultiDimensions.Initial
if(S-MultiDimensions.incomplete=true) then

S-Directdecl.Terminal.incomplete := true
endif

Figure 38: Semantics of array variable declarations.

set the length for the node associated with the instance for the Montage Dimension to 1. And
because we already have the type for an array variable being analyzed, we pass the length to
the nonterminal MultiDimensions. After all its components for the Montage Multi-Dimensions
have been analyzed, we recompute the length for the nonterminal Dimensions to get the correct
value.

In Figure 40, we show how to deal with every dimension in an array. If the value in the
dimension is a constant value, then we can compute the current length for the array. If the value
does not exist, we set the incomplete to be true, showing this array variable is an incomplete
type.

6 Functions

A function is a very important and useful concept in C. Generally speaking, functions are block-
structured; the variables which are declared in a C-function can only be referenced within that
function. In order to implement this, we define two new functions EnclosingProgramOrPro-
cedureOrLocalScope: Nodes and lastProgramOrProcedureOrLocalScope: Nodes → Nodes. The
first one EnclosingProgramOrProcedureOrLocalScope is used to denote the current block and
lastProgramOrProcedureOrLocalScope is used to denote the outside level block given by the cur-
rent block structure. The function declTable : Nodes × String → Nodes is used to denote a
node given by the block structure and a name and the first Nodes is used to denote the block
structure from which a name is looked up.

At the same time, C functions may have several active incarnations at a given time during
their execution. Thus we must have some means for storing multiple values of an ASM function
for a given node.

The universe Stack comprises the positive integers. A dynamic distinguished element Stack-
Top:Integer is used to indicate the current top of the stack. To store state-associated information

45

Dimensions ::= Dimension MultiDimensions

self S-MultiDimensionsI T

S-Dimension.Terminal.typelength := 1
S-MultiDimensions.Terminal.typelength := typelength
–
typelength := S-Dimension.Terminal.typelength *

S-MultiDimensions.typelength
arrayType := true
staticType := S-MultiDimensions.Initial
if(S-Dimension.incomplete=true) then

incomplete := true
endif

Figure 39: Semantics of Multi-Dimensions.

Dimension ::= ”[” ConditionexpOrNull ”]”

selfI T

arrayType := true
if(Conditionexp(S-ConditionexpOrNull)=true)then

typelength := S-ConditionexpOrNull.constValue * typelength
else

incomplete := true
endif

condition (S-ConditionexpOrNull.constValue 6=undef) or
(Conditionexp(S-ConditionexpOrNull)6=true)

Figure 40: Semantics of One Dimension.

46

on the stack, we modify the functions Value, Memory and RecCaller to be binary functions from
Nodes × Stack → CV alue.

6.1 Declarations and Definitions for Functions

Now we consider the semantics for C-Functions. Here we assume that any C function is declared
before it is defined. In the Montage for function declarations, we set the value of declTable at
this function name to the root node of the declaration Montage. In the following Montage shown
in Figure 41, we consider the two cases for function heads occurring in function definitions and
function declarations. The function head refers to a function name and its parameter part.

When the following Montage in Figure 41 is used for a function declaration, we need to set
declTable for the function name. When the following Montage is used for function definitions,
we need to set the function formalPar : Nodes → Nodes for the node associated with the
function declaration to the node corresponding to the parameter in this C-function. In addition,
we need to check the type consistency between parameters given in the function definition and
the function declaration by using the function CheckParameter : Node×Node → Boolean.

Directcase4 ::= Directdecl ”(” Parametertypelist ”)”
Directdecl = Ident

S-DirectdeclI self T

Name := S-Directdecl.Initial.Name
self.funvarType := true
typelength := FUNLENGTH
if(FuncDef = undef) then
declTable(self.S-Ident.Name) := S-Directdecl;
else
let d=LookUpVarDcl(S-Directdecl.Initial.Name) in

if S-Parametertypelist.S-Parameterdec 6= undef then
d.formalPar := S-Parametertypelist.S-Parameterdec

endif
endlet
endif

condition ((FuncDef=true) and (CheckParameter(S-Directdecl,S-Parametertypelist,self)=true))
or (FuncDef=undef)

Figure 41: Semantics of function declaration and definition.

Now we consider the semantics for parameters. There are two possible times at which the

47

copying of values required for parameter passing may occur. One is when an instance for the
Montage of function call is reduced; the other is when an instance for the Montage of function
parameters is reduced. Here we implement this assignment when the second situation occurs.

In the Montage shown in Figure 42, we give the dynamic semantics as follows. When an
instance for the Montage of Parametertypelist is reduced, we assign all the arguments in the
function call to the corresponding parameters. The actual arguments can be derived by the
function RecCaller and actualParam, which are defined in the Montage of function calls.

Parametertypelist ::= Parameterdec { ”,” Parameterdec }
LIST

S-ParameterdecI self
oT

parameter(Index(trg))

CT := self.nextStatement
vary over ind(i,self)
let var = RecCaller(StackTop).actualParam[i] in

AssignMemory(self.S-Parameterdec[i], GetMemoryValue(var, var.staticType)
endvary

Figure 42: Semantics of Parameters.

6.2 Callee Part

Now we consider the function definition. In order to deal with the scope, we set the function
EnclosingScope for the function definition. Additionally, in the static analysis we set gotoTarget
for those nodes in the LabelTable. In addition, we regard a function name as a variable stored
in the memory. Given an address which stores a function variable in the memory, the function
AddrToFunc : address → Nodes is used to denote a node where control should be directed
when that function is called.

The dynamic semantics decrements the value of StackTop to the previous one because the
C-function execution is over. Control passes to the node where this function is called by using
the function RecCaller : Integer → Nodes which is used to store the node that calls this C-
function at a given recursion level. We set the value of RecCaller when a C-function is called,
which is shown in the Montage for C-function calls. This function will be used when return
statements are met. The Montage for callee part of a function is shown in Figure 43.

48

Funcdefcase2 ::= Declspecifier Declarator Compoundstatement

S-Declarator self S-Compoundstatement endI

T
CurFundef := true
CurFunc := self
lastScope := EnclosingScope
EnclosingScope := self
FuncDef := true
–
CurFundef := false
FuncDef := undef – used to distinguish fun def and decl
CurFunc := undef
EnclosingScope := lastScope
do forall g in Gotostatement

if Within(g, self)=true then
g.gotoTarget := RecLabelLookup(g.S-Identifier.Name,g.scope)

endif
enddo
let d=LookUpFuncDcl(S-Declarator.Initial.Name,self.lastScope) in

if(S-Declarator.S-Parametertypelist6=undef)then
d.AddrToFunc := S-Declarator.S-Parametertypelist.Initial
S-Declarator.S-Parametertypelist.nextStatement:=

S-Compoundstatement.Initial
else

d.AddrToFunc := S-Compoundstatement.Initial
endif
d.funvarType := true

endlet

@end:
StackTop := StackTop - 1
CT := RecCaller(StackTop)

Figure 43: Semantics of Function Definitions.

49

6.3 Function Call

Although a function can be called by a function variable or a function pointer, we regard it as
an expression whose value is a memory address from which we use the function AddrToFunc
to get the corresponding task for this C-function. The static analysis of the Montage for the
function call sets the data and control functions as shown in Figure 44. Because the function
call is an expression and in order to represent the type for this expression, we define a new
node called “returnPoint” and set the staticType for it as the staticType for this expression.
In C, a pointer to the function like int(∗p)() can be used in the following form p() to call the
corresponding function. So we need the two cases to deal with the staticType as shown in the
following Montage. One is used to get the staticType for general function calls and the other is
used for a pointer to a function.

A function call is a postfix expression, called the function designator, followed by parentheses
containing a possibly empty, comma-separated list of assignment expressions, which constitute
the arguments to the function. The postfix expression must be of type “pointer to function
returning T”, for some type T, and the value of the function call has type T. The dynamic
semantics of the Montage increments the value of the stack. The dynamic semantics sets the
value for the function RecCaller in order to transfer control to the node next to this function
call. The Montage for function calls is shown in Figure 44.

A function returns its caller by the return statement. When return is followed by an
expression, the value is returned to the caller of the function. We direct control to the appropriate
node by using function RecCall : Nodes × Integer → Nodes which is set in the function call,
shown in Figure 44. The Montage for the return statement is shown in Figure 45.

7 Discussion

This work is a continuation of the original ASM semantics for C [12], and draws much of its
inspiration from the many applications of ASMs to provide programming language semantics
([5, 14]). The previous work, pre-dating the invention of Montages, focused solely on the dynamic
semantics of C, assuming that static analysis had been previously performed and was available
through various static ASM functions. (In fact, it was the omission of explicit derivation of these
static functions, along with the observation that ASMs could be used to provide definitions of
these as well, which led to the development of Montages [2].)

This work shows that in fact the full static and dynamic semantics of C can be given using
ASMs. This work affirms the basic correctness of the original work; in designing and testing the
Montages for C, no errors were found in the original specification. In most places, the dynamic
rules used in [12] appear unaltered in the dynamic portion of the Montages (up to renaming).

At the same time a tool called Gem-Mex [1], which supports Montages, has been used to
translate our Montages into an executable form for simulation and testing. Since the semantics
of Montages are given in terms of ASMs [18], Gem-Mex can translate the Montages into ASMs,
which are then executed by an ASM interpreter. This gives a truly executable semantics for
C; one can observe directly the particular effect of a given language construct by coding a C

50

Postfunpar ::= Postfixexp ”(” Assignmentexp {”,” Assignmentexp } ”)”

LIST

S-Assignmentexp

I

S-Postfixexp self

func

returnPoint

actualParam(IndexOf(trg))

T

if((S-Postfixexp.Terminal.staticType.pointType=true) and
(S-Postfixexp.Terminal.staticType.staticType.funvarType=true))then
returnPoint.staticType:=S-Postfixexp.Terminal.staticType.staticType.staticTyp

else
returnPoint.staticType:=S-Postfixexp.Terminal.staticType.staticType

endif

CT := GetMemoryValue(func.value,func.staticType).AddrToFunc
StackTop := StackTop + 1
RecCaller(StackTop+1) := returnPoint

Figure 44: Semantics of function calls.

ReturnStatement ::= ”return” Expressionopt ”;”

S-Expressionopt selfI

retvalue o T

RecCaller(StackTop).recValue(StackTop-1) := retvalue.value
StackTop := StackTop -1
CT := RecCaller(StackTop)

Figure 45: Montage for return statements.

51

program using that construct and observing its execution. Thus, traditional testing and debug-
ging techniques can be used to ensure the correctness of a given program, or of the semantics
themselves. The tool itself is raw in some places, and occasionally forces us into certain modes
of specifying semantics which are less natural than others; still, the benefit of executable testing
more than makes up for the occasional awkwardness.

Our first set of Montages for C [15] used an older version of the Montage tool; our current
work [16] uses the latest version of the tool. The most significant difference (for us) between
the two versions of the two is the inclusion of conditional control flow arrows in the control
flow diagram of each Montage. A significant portion of the original C dynamic semantics [12]
was devoted to control flow issues; with control flow arrows in Montages, most of these rules
disappear. This provides a separation between control flow and data value generation, which
provides a cleaner look to the semantics.

Montages have been used to provide semantics for other programming languages, notably
Oberon [19], the first language to be given semantics using Montages, and Java [23]. Oberon
and Java are both imperative languages similar in style to C, but with different features. Of
particular interest is the fact that C is much more low-level than either Oberon or Java, leading
to additional complications in the semantics. Additionally, C admits certain ambiguity in the
evaluation order of expressions which is not present in Oberon or Java. Our work shows that
the Montages technique is capable of expressing the semantics languages with lower-level details
than Oberon or Java.

Specifying semantics of programming languages is a popular formal methods topic; prac-
titioners know there are innumerable formal methods proposed for this purpose. The C pro-
gramming language has been a popular topic for treatment by various techniques, in part due
to its ubiquituous nature in modern software systems. A recent Ph.D. thesis by Norrish [20]
contains a comprehensive summary of recent semantic treatments of C. Most of the works cited
differ in their desired end point (e.g., mechanical theorem proving, refinement formalisms) and
thus tailor their semantics to more easily achieve that end. In particular, Norrish’s work, which
expresses the semantics of C in HOL, has the explicit goal of “demonstrating practical utility”
for his HOL semantics by proving various properties regarding programs.

Our work does not explicitly treat the problem of program correctness, instead focusing on
providing a semantics which is both correct and readable by people rather than one designed
for further automated processing by theorem provers or other devices. We do not deny the
usefulness of being able to use such semantics for validation and verification. Indeed, one of
the benefits of having an executable semantics such as ASMs/Montages is the ability to test
the semantics on actual programs and observe the correct (or incorrect) behavior of the system,
as discussed above. Other ASM works [8, 21, 24] have shown the utility of interfacing ASM
semantics with automated correctness tools. But often, in order to produce output suitable for
automated verification, one sacrifices expressiveness or readability. We have chosen to focus on
the latter.

Norrish (among others) rightly points out certain weaknesses in our semantics, most notably
in our handling of the evaluation of expressions. The true semantics of C permits expressions to
be evaluated in an interleaving fashion. For example, when evaluating an expression involving

52

an operator such as “(a + b)”, the evaluation of the subexpressions a and b can occur in an
interleaved fashion (e.g. evaluate a for a few steps, then b for a few steps, then a again, and
so on). Our semantics forces one subexpression to evaluate completely before evaluation of the
other can begin; since expression evaluation can generate side effects, our semantics can miss
certain possible results.

One solution to this problem involves using a multi-agent ASM [9] to execute the dynamic
portion of the semantics. When reaching an expression which permits an interleaving semantics,
the multi-agent ASM would create two child agents which would simultaneously traverse the two
subexpressions. Once the two child agents finish, the parent agent would kill the child agents
and continue on as before. Of course, child agents could create child agents of their own and so
forth. Currently, neither Montages nor Gem-Mex support multi-agent ASMs.

With respect to multi-agent ASMs and language semantics, Gurevich [11] has observed that
multiple agents may provide a useful semantic notion for expressing the semantics of subprogram
(i.e., procedure and function) calls in imperative languages. Traditionally, the semantics of
subprogram calls are explained in terms of a stack of values, corresponding to the traditional
implementation techniques for such languages. Alternatively, one could view the execution of
a program in terms of a set of agents, each of which is responsible for the execution of a given
subprogram. When a subprogram call is reached, the agent currently executing would create a
new agent, give that agent the parameters needed to execute the subprogram, and suspend its
own behavior until completion of the child agent. (A similar technique was used in [13] to give
semantics to recursive ASMs.)

In a sense, this solution is equivalent to previous solutions as we have essentially a stack
of agents rather than stacks of values. On the other hand, the traditional stack-based view of
subprogram calls ties one to a particular implementation technique; an agent-based view would
admit alternative implementations.

Acknowledgements. An early version of this work appeared as [15], and was announced at
the FM’99 World Congress on Formal Methods; the current extended abstract version appears
as [16]. Yuri Gurevich suggested this project to us and has supported its development. Matthias
Anlauff and Philipp Kutter provided frequent assistance with the Montages tool. Egon Börger,
Chuck Wallace, and several anonymous referees made comments on various drafts of this work.
We thank all of them for their contributions.

References

[1] M. Anlauff, P. Kutter, and A. Pierantonio, “Formal Aspects of and Development Environ-
ments for Montages.” 2nd International Workshop on the Theory and Practice of Algebraic
Specifications, Amsterdam 1997.

[2] M. Anlauff, P. Kutter, and A. Pierantonio, “Enhanced Control Flow Graphs in Montages.”
Proceedings of Perspectives of System Informatics (PSI’99), vol. 1755, pp. 40-53, Springer
LNCS, 1999.

53

[3] E. Börger and I. Durdanovic, “Correctness of compiling Occam to Transputer code.” Com-
puter Journal, 39(1):52-92, 1996.

[4] E. Börger, I. Durdanovic, and D.Rosenzweig, “Occam: Specification and Compiler Correct-
ness. Part I: Simple Mathematical Interpreters.” In U. Montanari and E.R. Olderog, editors,
Proc. PROCOMET’94 (IFIP Working Conference on Programming Concepts, Methods and
Calculi), pages 489-508. North-Holland, 1994.

[5] E. Börger and J. Huggins, “Abstract State Machines 1988-1998: Commented ASM Bibliog-
raphy.” Formal Specification Column (H. Ehrig, ed.), EATCS Bulletin 64, February 1998,
105-127.

[6] E. Börger and D. Rosenzweig, “A Mathematical Definition of Full Prolog.” In Science of
Computer Programming, volume 24, pages 249-286. North-Holland, 1994.

[7] E. Börger and W. Schulte, “Programmer Friendly Modular Definition of the Semantics of
Java.” In J. Alves-Foss, ed., Formal Syntax and Semantics of Java. Springer LNCS, 1998.

[8] G. Del Castillo and K. Winter, “Model Checking Support for the ASM High-Level Lan-
guage”. Technical Report TR-RI-99-209, Universitat-GH Paderborn, June 1999.

[9] Y. Gurevich, “Evolving Algebras 1993: Lipari Guide.” In E. Börger, editor, Specification
and Validation Methods, pages 9-36. Oxford University Press, 1995.

[10] Y. Gurevich, “May 1997 Draft of the ASM Guide”, University of Michigan EECS Depart-
ment Technical Report CSE-TR-336-97.

[11] Y. Gurevich. Personal communication, September 1999.

[12] Y. Gurevich and J.Huggins. “The Semantics of the C Programming Language.” In E.
Börger, H. Kleine Büning, G. Jäger, S.Martini, and M.M. Richter, editors, Computer Science
Logic, volume 702 of LNCS, pages 274-309. Springer, 1993.

[13] Y. Gurevich and M. Spielmann, “Recursive Abstract State Machines.” Journal of Universal
Computer Science, 3(4):233-246, 1997.

[14] J. Huggins, ed., Abstract State Machines Home Page,
http://www.eecs.umich.edu/gasm/.

[15] J. Huggins and W. Shen, “The Static and Dynamic Semantics of C: Preliminary Version.”
Technical Report CPSC-1999-1, Computer Science Program, Kettering University, February
1999.

[16] J. Huggins and W. Shen, “The Static and Dynamic Semantics of C: Extended Abstract.”
Proceeding of ASM 2000 workshop, Monte Verit, Switzerland. Mar. 19-24, 2000.

[17] B. Kernighan and D. Ritchie, The C programming Language, 2nd ed.. Prentice Hall, 1988.

54

[18] P. Kutter and A. Pierantonio, “Montages: Specifications of Realistic Programming Lan-
guages.” Journal of Universal Computer Science, 3(5):416-442, 1997.

[19] P. Kutter and A. Pierantonio, “The Formal Specification of Oberon.” Journal of Universal
Computer Science, 3(5):443-503, 1997.

[20] M. Norrish, “C formalized in HOL.” Ph.D. Thesis, University of Cambridge, 1998.

[21] G. Schellhorn and W. Ahrendt, “Reasoning about Abstract State Machines: The WAM
Case Study”, Journal of Universal Computer Science, vol. 3, no. 4 (1997), 377–413.

[22] C. Wallace, “The Semantics of the C++ Programming Language.” In E. Börger, editor,
Specification and Validation Methods, pages 131-164. Oxford University Press, 1995.

[23] C. Wallace, “The Semantics of the Java Programming Language: Preliminary Version.”
Technical Report CSE-TR-355-97, EECS Dept., University of Michigan, December 1997.

[24] W. Zimmerman and T. Gaul, “On the Construction of Correct Compiler Back-Ends: An
ASM Approach”, Journal of Universal Computer Science, vol. 3, no. 5 (1997), 504–567.

8 Appendix: Some Macro Definitions

asm IsArithmeticOrPointerType(op) is
if((IsArithmeticType(op.staticType)=true) or (op.staticType.pointType=true))then

IsArithmeticOrPointerType result := true
else

IsArithmeticOrPointerType result := false
endif

endasm

asm CompareType(var,exp,name) is
if(exp.staticType.funvarType=true) then

CompareType result := CompareBasicFunType(var.staticType,exp.staticType)
elseif var.decl.funvarType= true then

CompareType result :=
CompareBasicType(var.decl.staticType.staticType.staticType,exp.staticType)

elseif (var.Terminal.lvalue!= true or (var.staticType.arrayType=true and
var.Terminal.incomplete = true)) then

CompareType result := false;
else

CompareType result := CompareBasicType(var.staticType,exp.staticType)
endif

55

endif
endasm

asm ConvertName(token1,token2) is
if((token1.staticType.funvarType=true) and (token2.staticType.Name=”int”))then

ConvertName result:=token1.staticType
elseif((token2.staticType.funvarType=true) and (token1.staticType.Name=”int”))then

ConvertName result:=token2.staticType
elseif token1.staticType.Name=”double” then

ConvertName result:=token1.staticType
elseif token2.staticType.Name=”double” then

ConvertName result:=token2.staticType
elseif token1.staticType.Name=”float” then

ConvertName result:=token1.staticType
elseif token2.staticType.Name=”float” then

ConvertName result:=token2.staticType
elseif token1.staticType.Name=”int” then

ConvertName result:=token1.staticType
elseif token2.staticType.Name=”int” then

ConvertName result:=token2.staticType
elseif(token1.staticType.funvarType=true and

token2.staticType.funvarType=true and
CompareBasicType(token1.staticType.staticType,
token2.staticType.staticType)=true) then

ConvertName result:=token1.staticType
else

ConvertName result:= ”undef”
endif

endasm

asm CheckConditions(exp1,exp2) is
if((IsArithmeticType(exp1.staticType)=true) and (IsArithmeticType(exp2.staticType)=true))then

CheckConditions result:=true
elseif((exp1.staticType.pointType=true) and (exp2.staticType.pointType=true)) then

CheckConditions result := CheckTypeName(exp1.staticType.staticType,
exp2.staticType.staticType);

elseif(((exp1.staticType.pointType=true) and (exp2.staticType.Name=”void”))or
((exp2.staticType.pointType=true) and (exp1.staticType.Name=”void”))or
((exp1.staticType.Name=”void”) and (exp2.staticType.Name=”void”)))then

56

CheckConditions result := true
elseif((Structorunion(exp1.staticType)=true) and

(Structorunion(exp2.staticType)=true))then
CheckConditions result:=CheckStrucType(exp1.staticType,

exp2.staticType);
elseif((exp1.staticType.funvarType=true) and (exp2.staticType.funvarType=true)) then

CheckConditions result:= CheckConditions(exp1.staticType, exp2.staticType)
else

CheckConditions result:=false
endif

endasm

asm CheckPointStruct(exp1,exp2) is
if((exp1.staticType.pointType=true) and (exp2.staticType.pointType=true))then

CheckPointStruct result := CheckPointStruct(exp1.staticType.staticType,
exp2.staticType.staticType)

endif
endasm

asm IsIntType(op) is
if((op.staticType.Name=”int”) or (op.staticType.Name=”char”))then

IsIntType result := true
else

IsIntType result := false
endif

endasm

asm IsArithmeticType(op) is
if((op.Name=”int”) or (op.Name=”char”) or

(op.Name=”float”) or (op.Name=”double”)) then
IsArithmeticType result := true

else
IsArithmeticType result := false

endif
endasm

asm IsMultiOpType(op,token1, token2) is

57

if(op=”%”) then
if((IsIntegerType(token1)=1) and (IsIntegerType(token2)=1))then

IsMultiOpType result:=1
else

IsMultiOpType result:=0
endif

elseif((IsArithmeticType(token1.staticType)=true) and
(IsArithmeticType(token2.staticType)=true))then
IsMultiOpType result:=1

else
IsMultiOpType result:=0

endif
endif

endasm

asm CompareArithType(op1,op2,name) is
if name = ”+” then

if (((op1.staticType.pointType=true) or (op1.staticType.arrayType=true))
and (op2.staticType.Name=”int”)) or

(((op2.staticType.pointType=true) or (op2.staticType.arrayType=true))
and (op1.staticType.Name=”int”)) or

((op1.staticType.pointType!=true) and (op2.staticType.pointType!=true) and
(op1.staticType.arrayType!=true) and (op2.staticType.arrayType!=true) and
(op1.staticType.Name = op2.staticType.Name)) or
((op1.staticType.funvarType=true) and (IsIntType(op2)=true)) or
((op2.staticType.funvarType=true) and (IsIntType(op1)=true)) then

CompareArithType result := true
else

CompareArithType result := false
endif

elseif name = ”-” then
if (((op1.staticType.pointType=true) or (op1.staticType.arrayType=true))

and (op2.staticType.Name=”int”)) or
(((op2.staticType.pointType=true) or (op2.staticType.arrayType=true))

and (op1.staticType.Name=”int”)) or
((op1.staticType.pointType!=true) and (op2.staticType.pointType!=true) and
(op1.staticType.arrayType!=true) and (op2.staticType.arrayType!=true) and

(op1.staticType.Name = op2.staticType.Name)) or
(((op1.staticType.pointType=true) or (op1.staticType.arrayType=true)) and
((op2.staticType.pointType=true) or (op2.staticType.arrayType=true)) and

58

(op1.staticType.staticType.Name = op2.staticType.staticType.Name))then
CompareArithType result := true

elseif((op1.staticType.funvarType=true) and (IsIntType(op2)=true)) or
((op2.staticType.funvarType=true) and (IsIntType(op1)=true)) then

CompareArithType result := true
else

CompareArithType result := false
endif

endif
endasm

asm Add(op1, op2, name) is
if name = ”+” then

if(((op1.staticType.arrayType=true) or (op1.staticType.pointType=true)) and
((op2.staticType.arrayType!=true) and (op2.staticType.pointType!=true))) then

Add result := op1.value+(op2.value*op1.staticType.staticType.typelength)
elseif (((op2.staticType.arrayType=true) or (op2.staticType.pointType=true)) and

((op1.staticType.arrayType!=true) and (op1.staticType.pointType!=true))) then
Add result := op2.value+(op1.value*op2.staticType.staticType.typelength)

else
Add result := op2.value+op1.value

endif
elseif name = ”-” then

if(((op1.staticType.arrayType=true) or (op1.staticType.pointType=true)) and
((op2.staticType.arrayType=true) or (op2.staticType.pointType=true))) then

Add result := %divide(op1.value-op2.value,op1.staticType.staticType.typelength)
elseif ((op1.staticType.arrayType=true) or (op1.staticType.pointType=true)) then

Add result := op1.value - (op2.value*op1.staticType.staticType.typelength)
elseif ((op2.staticType.arrayType=true) or (op2.staticType.pointType=true)) then

Add result := op2.value-(op1.value*ope2.staticType.staticType.typelength)
else

Add result := op1.value-op2.value
endif

endif
endasm

asm Unary(arg, op) is
if arg = undef then
elseif op = ”++” then

59

Unary result := arg + 1
elseif op = ”-” then

Unary result := arg - 1
elseif op = ” ” then

Unary result := ((-1)*arg) - 1
elseif op = ”!” then

if(arg=0) then
Unary result := 1

else
Unary result := 0

endif
endif

endasm

asm Incdec(op1,name) is – name is either ”++” or ”–”
if name = ”++” then

if((op1.staticType.arrayType=true) or (op1.staticType.pointType=true)) then
Incdec result := GetMemoryValue(op1.var2memory,op1.staticType) +

op1.staticType.staticType.typelength
else

Incdec result := GetMemoryValue(op1.var2memory,op1.staticType) + 1
endif

else
if((op1.staticType.arrayType=true) or (op1.staticType.pointType=true)) then

Incdec result := GetMemoryValue(op1.var2memory,op1.staticType) −
op1.staticType.staticType.typelength

else
Incdec result := GetMemoryValue(op1.var2memory,op1.staticType) - 1

endif
endif

endasm

asm CheckPara(var,pars) is
let d = LookUpFuncDcl(var.Initial.Name,EnclosingScope.lastScope) in

do forall i=0; i¡pars.S-Parameterdec.Listlength; i=i+1
if(CheckperPara(d.formalPar[i], pars.S-Parameterdec[i])=false)then

CHECK PARA ERROR := true
endif

enddo

60

endlet
endasm

asm CheckParameter(var,pars,i) is
relation CHECK PARA ERROR
relation flag

if Parameterdec(i.Parent) = true then
CheckParameter result := true – no check for fun par

else
if flag = false then – step one

CheckPara(var, pars)
flag := true

else – step two
CheckParameter result := not CHECK PARA ERROR

endif
endif

endasm

61

