Chapter 2
Introduction to Logic Circuits

• Logic functions and circuits
• Boolean algebra
• Synthesis of digital circuits
• Introduction to CAD tools
• Introduction to VHDL
Logic functions and Circuits

x_1 and x_2 are binary variables, that may take on only one of two Possible values, i.e., 0 or 1

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$x_1 \cdot x_2$</th>
<th>$x_1 + x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

AND **OR**

Figure 2.6. A truth table for the AND and OR operations.
Figure 2.8. The basic gates.
(a) Network that implements $f = x_1' + x_1 \cdot x_2$

(b) Truth table

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$f(x_1, x_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(c) Timing diagram

(d) Network that implements $g = x_1' + x_2$

Figure 2.10. An example of logic networks.
Boolean Algebra

• **Axioms** of Boolean Algebra

A1) $0 \cdot 0 = 0$ \hspace{1cm} A1') $1 + 1 = 1$
A2) $1 \cdot 1 = 1$ \hspace{1cm} A2') $0 + 0 = 0$
A3) $0 \cdot 1 = 1 \cdot 0 = 0$ \hspace{1cm} A3') $1 + 0 = 0 + 1 = 1$
A4) if $x = 0$, then $x' = 1$ \hspace{1cm} A4') if $x = 1$, then $x' = 0$
Boolean Algebra

• Single variable theorems

T1) $x \cdot 0 = 0$ \hspace{1cm} T1’) $x + 1 = 1$
T2) $x \cdot 1 = x$ \hspace{1cm} T2’) $x + 0 = x$
T3) $x \cdot x = x$ \hspace{1cm} T3’) $x + x = x$
T4) $x \cdot x’ = 0$ \hspace{1cm} T4’) $x + x’ = 1$
T5) $x’’ = x$
Boolean Algebra

- Two and three variable theorems

T6) $x \cdot y = y \cdot x$
T6’) $x + y = y + x$
T7) $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
T7’) $x + (y + z) = (x + y) + z$
T8) $x \cdot (y + z) = x \cdot y + x \cdot z$
T8’) $x + y \cdot z = (x + y) \cdot (x + z)$
T9) $x + x \cdot y = x$
T9’) $x \cdot (x + y) = x$
T10) $x \cdot y + x \cdot y’ = x$
T10’) $(x + y) \cdot (x + y’) = x$
T11) $(x \cdot y)’ = x’ + y’$
T11’) $(x + y)’ = x’ \cdot y’$
T12) $x + x’ \cdot y = x + y$
T12’) $x \cdot (x’ + y) = x \cdot y$
T13) $x \cdot y + y \cdot z + x’ \cdot z = x \cdot y + x’ \cdot z$
T13’) $(x + y) \cdot (y + z) \cdot (x’ + z) = (x + y) \cdot (x’ + z)$

Precedence rule: in the absence of parentheses, operations in logic expressions must be performed in the order: NOT, AND, and then OR
Boolean Algebra

• **Principle of duality:** given a logic expression its dual is obtained by replacing all + operators with · operators, and vice versa, and by replacing all 0s with 1s, and vice versa.
• The dual of any true statement (axiom or theorem) in Boolean algebra is also true.
• T6 & T6’ are called *Commutative* property
• T7 & T7’ are called *Associative* property
• T8 & T8’ are called *Distributive* property
• T9 & T9’ are called *Absorption* property
• T10 & T10’ are called *Combining* property
• T11 & T11’ are called *DeMorgan’s theorem*
• T13 & T13’ are called *Consensus theorem*
Boolean Algebra

Example: Apply theorems of Boolean Algebra to prove that the left and right hand sides of the following logic equation are identical.

\[x_1 \cdot x_3' + x_2' \cdot x_3' + x_1 \cdot x_3 + x_2' \cdot x_3 = x_1' \cdot x_2' + x_1 \cdot x_2 + x_1 \cdot x_2' \]
Boolean Algebra

- The Venn Diagram
 - Graphical illustration of various operations and relations in the algebra of sets
 - A set \(s \) is a collection of elements that are said to be members of \(s \)
 - In Venn diagram the elements of a set are represented by the area enclosed by a square, circle or ellipse
 - In Boolean algebra there are only two elements in the universe, i.e. \{0,1\}. Then the area within a contour corresponding to a set \(s \) denotes that \(s = 1 \), while the area outside the contour denotes \(s = 0 \)
 - In a Venn diagram we shade the area where \(s = 1 \)
Figure 2.12. The Venn diagram representation.

(a) Constant 1

(b) Constant 0

(c) Variable \(x \)

(d) \(\bar{x} \)

(e) \(x \cdot y \)

(f) \(x + y \)

(g) \(x \cdot \bar{y} \)

(h) \(x \cdot y + z \)

Figure 2.13. Verification of the distributive property

\[x \cdot (y + z) = x \cdot y + x \cdot z \]
Figure 2.14. Verification of \(x \cdot y + \bar{x} \cdot z + y \cdot z = x \cdot y + \bar{x} \cdot z \)
Synthesis of digital circuits

- *Synthesis* is the process of generating a circuit that realizes a functional behavior of a logic system from a given description (stated in form of verbal statements, truth table, K-map, state diagram, etc.)

Example: Synthesize a logic function that realizes the following truth table. Use AND, OR, and NOT gates

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$f(x_1, x_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 2.15. A function to be synthesized.
Synthesis of digital circuits

(a) Canonical sum-of-products

(b) Minimal-cost realization

Figure 2.16. Two implementations of a function in Figure 2.15.
Synthesis of digital circuits

Terminologies:

- *Literal*: a variable or the complement of a variable
- *Product term*: a single literal or logical product (AND) of two or more literals
- *n-variable minterm*: a product term with n literals. It assumes a value of 1 for exactly one row of a function’s truth table (i.e. input combination)
- *Sum-of-products (SOP)*: logical sum (OR) of product (AND) terms
- *Canonical SOP*: An SOP where each product term is a minterm.
- *Sum term*: a single literal or a logical sum of two or more literals.
- *n-variable maxterm*: a sum term with n literals. It assumes a value of 0 for exactly one row of a function’s truth table (i.e. input combination)
- *Product-of-sums (POS)*: is logical product of sum terms
- *Canonical POS*: A POS where each sum term is a maxterm
Synthesis of digital circuits

<table>
<thead>
<tr>
<th>Row number</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>Minterm</th>
<th>Maxterm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$</td>
<td>$M_0 = x_1 + x_2 + x_3$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$m_1 = \overline{x}_1 \overline{x}_2 x_3$</td>
<td>$M_1 = x_1 + x_2 + \overline{x}_3$</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$m_2 = \overline{x}_1 x_2 \overline{x}_3$</td>
<td>$M_2 = x_1 + \overline{x}_2 + x_3$</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$m_3 = \overline{x}_1 x_2 x_3$</td>
<td>$M_3 = x_1 + \overline{x}_2 + \overline{x}_3$</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$m_4 = x_1 \overline{x}_2 \overline{x}_3$</td>
<td>$M_4 = \overline{x}_1 + x_2 + x_3$</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$m_5 = x_1 \overline{x}_2 x_3$</td>
<td>$M_5 = \overline{x}_1 + x_2 + \overline{x}_3$</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>$m_6 = x_1 x_2 \overline{x}_3$</td>
<td>$M_6 = \overline{x}_1 + \overline{x}_2 + x_3$</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$m_7 = x_1 x_2 x_3$</td>
<td>$M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$</td>
</tr>
</tbody>
</table>

Figure 2.17 Three-variable minterms and maxterms.
Synthesis of digital circuits

Example: For the three variable function given by the following truth table, determine the minterms, maxterms, canonical SOP, canonical POS, minterm list or on-set, maxterm list or off-set, minimal SOP and minimal POS by algebraic manipulations.

<table>
<thead>
<tr>
<th>Row number</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>$f(x_1, x_2, x_3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 2.18. A three-variable function.
Synthesis of digital circuits

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization

Figure 2.19. Two realizations of the function in Figure 2.18.
Synthesis of digital circuits

- NAND and NOR gates and their DeMorgan equivalent representations

(a) NAND gates

(b) NOR gates
Synthesis of digital circuits

(a) $\overline{x_1x_2} = \overline{x_1} + \overline{x_2}$

(b) $\overline{x_1 + x_2} = \overline{x_1}\overline{x_2}$

Figure 2.21. DeMorgan’s equivalents of NAND and NOR gates.
Synthesis of digital circuits

- Converting a AND-OR realization of an SOP to a NAND-NAND realization

- Converting a OR-AND realization of a POS to a NOR-NOR realization

Chapter 2-21
Synthesis of digital circuits

Example: Synthesize a logic circuit from a verbal description of a problem for a three-way light control (section 2.8.1, pg. 52)

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Exercise: Convert the SOP and POS circuit realizations to NAND-NAND and NOR-NOR circuits, respectively.
Introduction to CAD tools

• *Computer Aided Design (CAD)* tools automate the processes of:
 – Design
 – Synthesis
 – Optimization
 – Simulation:
 • Functional
 • Timing
 – Physical implementation of logic circuits on target devices

• Quartus II from Altera Corporation is such software used in this course.
Introduction to CAD tools

- **Design entry**: description of what the desired circuit is supposed to do and the formation of its general structure. This step of a design requires design experience & intuition so it is done by a designer.
 - *Schematic Capture*
 - graphical entry
 - *Hardware Description Language* (eg. VHDL, Verilog, ABEL)
 - Computer program describing how a hardware should behave
 - VHDL & Verilog are industry standards and thus portable to different target hardware and CAD tools
 - Designer can focus on the functionality of the desired circuit without being overly concerned about the implementation technology

- Both Schematic & HDL design entry methods allow modular and hierarchical designs to manage system complexity
Introduction to CAD tools

• *Synthesis* – process of generating a logic circuit from an initial specification given in schematic diagram or HDL.

 – It involves compiling or translating the design entry (eg. VHDL) into a set of logic expressions that describe the logic functions

 – Often the synthesis process is followed by *optimization* for specified goals: HW cost or time delay

• *Functional Simulation* – used to verify that the design will function as expected

 – Assumes that the logic equations generated during synthesis will be implemented with *perfect gates* with no propagation delays

 – Test sequences are applied for which the simulator generates outputs
Introduction to CAD tools

• Physical Design – the tool determines exactly how to implement the circuit on a given chip
 – Maps a circuit specified in logic expressions into a realization that makes use of the resources available on the target chip
 – Determines the placement of specific logic elements & their interconnection

• Timing Simulation – a simulation that takes into account the actual delays of signals as they are processed by the logic elements and propagate through the wires
 – Helps determine if the generated circuit satisfies the timing requirements of the specification

• Chip Configuration or programming – this step involves the implementation of the circuit on an actual target chip
Figure 2.29. A typical CAD system.
Introduction to VHDL

• VHDL = Very High Speed Integrated Circuit (VSHIC) Hardware Description Language, an IEEE standard language
• Original standard was adopted in 1987 and called IEEE 1076. Revised standard adopted in 1993 and called IEEE 1164. It was subsequently updated in 2000 and 2002.
• Initially intended as a documentation language for describing the structure of complex circuits, and for modeling the behavior of digital circuits for simulation.
• It has now become a popular tool for design entry in CAD systems, which synthesize the VHDL code into hardware implementation.
• VHDL is a sophisticated language so only a subset of features for use in synthesis will be covered in this course. The required features will be introduced when needed.
Introduction to VHDL

- Digital signals in VHDL are represented by a data object of type \textit{BIT}.
- BIT objects can have only one of two possible values: 0 or 1.
- A VHDL construct called \textit{entity} is used to declare the input and output interfaces of a circuit or module.
- The entity must be assigned a name.
- The input and output signals for an entity are called its \textit{ports}, and they are identified by the keyword \textit{PORT}.
- Each port has an associated \textit{mode} that specifies whether it is input (\textit{IN}) to the entity or output (\textit{OUT}) from the entity.
- Each port is a signal hence has an associated type.
Introduction to VHDL

Figure 2.30. A simple logic function.

ENTITY example1 IS
 PORT (x1, x2, x3 : IN BIT ;
 f : OUT BIT) ;
END example1 ;

Figure 2.31. VHDL entity declaration for the circuit in Figure 2.30.
Introduction to VHDL

- An entity specifies the input and output signals for a circuit, but no information about its internal functions.
- The circuit’s functionality must be specified with a VHDL construct called `architecture`.
- An architecture must be given a name and attached to a corresponding entity.
- VHDL provides built-in Boolean operators (AND, OR, NOT, NAND, NOR, XOR, and XNOR) that could be used for describing the logical functions of an architecture.
- VHDL `signal assignment` operator `<=` could be used to assign the result of a logic expression on the right-hand side of the operator to an output signal on the left.
Introduction to VHDL

ENTITY example1 IS
 PORT (x1, x2, x3 : IN BIT;
 f : OUT BIT);
END example1 ;

ARCHITECTURE LogicFunc OF example1 IS
BEGIN
 f <= (x1 AND x2) OR (NOT x2 AND x3) ;
END LogicFunc ;

Figure 2.33. Complete VHDL code for the circuit in Figure 2.30.

As a simple analogy, an entity is equivalent to a symbol in a schematic Diagram and the architecture specifies the logic circuitry
Introduction to VHDL

ENTITY example2 IS
 PORT (x1, x2, x3, x4 : IN BIT ;
 f, g : OUT BIT);
END example2 ;

ARCHITECTURE LogicFunc OF example2 IS
 BEGIN
 f <= (x1 AND x3) OR (x2 AND x4);
 g <= (x1 OR NOT x3) AND (NOT x2 OR x4);
END LogicFunc ;

Figure 2.34 VHDL code for a four-input function.

Figure 2.35 Logic circuit for the code in Figure 2.34.