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1. (Solution by Neil Gurram, a 4th-7th finisher)
We claim that Mr. Brown is the criminal.

First, we show that Mr. Brown lied one time and told the truth once,
Mr. Potter told a lie twice and Mr. Smith told the truth both times.

• We show that this situation is possible by assuming that Smith
told the truth twice. Then, Brown committed the crime and Smith
did not.

• This truth would imply that Mr. Potters is lying for both state-
ments, as he claimed that Mr. Brown did not commit the crime
and Mr. Smith did, which means he is lying.

• Hence, Mr. Brown is telling a lie and a truth. From the previous
statements, one sees that he is lying about “his not doing it” and
telling the truth that Mr. Potter did not do it. So, Mr. Brown
lied once and told the truth once.

Therefore from these statements, Mr. Brown committed the crime.

Now, we must show that the other two did not commit the crime.
Therefore, either Mr. Brown or Mr. Potter told the truth twice.

• If Mr. Brown told truth twice “I have not done it, Mr. Potter has
not done it”. Then Mr. Potter has to telling the truth twice as
then Mr. Smith must have committed the crime and Mr. Brown
did not do it, so Mr. Potter told the truth twice, a contradiction.

• If Mr. Potter told truth twice “Mr. Brown has not done it. Mr.
Smith has done it.” Then since Mr. Smith committed the crime,
then neither Mr. Brown nor Mr. Smith committed the crime so
Mr. Brown is telling the truth twice, a contradiction.

Therefore, Mr. Brown is the culprit.

2. (Solution by Randy Jia, a 4th-7th finisher)
We will prove that, in general, with an odd number of figures, it is
not possible for every figure to touch exactly 3 other figures. If this is
proved, the problem is trivial.
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We will make this problem a graph theory problem.

So we have 2n + 1 vertices, each which represents n figure. (a circle in
this case) We connect an edge between 2 vertices if the 2 figures touch
each other.

Definition: The degree of a vertex is the number of edges coming
out of that vertex or the number of vertices it is connected to.

In our problem, our 2n + 1 vertices each have degree 3. So
Total Degree =

∑

deg = (2n + 1) × 3 = 6n + 3 =odd.

However, an edge is the connection of 2 vertices, so half of the total
degrees is the number of edges.

But 6n+3

2
= odd number

2
, so not an integer, which is impossible. Thus,

it is impossible to have an odd number (1000001) of circles such that
each circle touches exactly 3 other circles.

3. (Solution by Nicholas Triantafillou, a 4th-7th finisher)
We note that since the angle of incidence stays the same with each
reflection, the eight points must be spaced evenly around the circle.
Denote these points (clockwise) by P1, P2, . . . P8. We note that to hit
all 8 points, the path must cycle in of the following patterns since
the number of points skipped between consecutive points visited is
constant.
Patterns: a)P1P4P7P2P5P8P3P6, b)P1P2P3P4P5P6P7P8

These patterns cycle around and can also be taken in the opposite
order.

In pattern a, the angle of incidence is 1

2
× 2π

8
= π

8
radians.

In pattern b, the angle of incidence is 1

2
× 6π

8
= 3π

8
radians.

We note that if the angle of incidence is θ and the particle is launched
at angle α from point (−α, 0) then the angle between the x-axis and
the point at which the particle is reflected is θ + α, since the exterior
angle equals the sum of the opposite interior angles. Now, we will find
,given angle α and point (−α, 0), what radius allows us to have angle
of incidence θ. From above, we know that the intersection of the lines
y = tan α(x + d) and y = tan(α + θ)x lies on the circle.
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Od

α

θ

α + θ

Their intersection point can be easily shown to be

x0 =
d tanα

tan(α + θ) − tan(α)
, y0 =

tanαd tan(α + θ)

tan(α + θ) − tan(α)
.

Then R2 = x2
0 + y2

0 since the origin is (0, 0), so

R =
d tanα

tan(α + θ) − tan(α)

√

1 + tan2(α + θ)

= ±
d tanα sec(α + θ)

tan(α + θ) − tan(α)

=
±d sin α

cos α sin(α + θ) − sin α cos(α + θ)

=
±d sin α

sin θ
.

Thus sin alpha = ±R
d

sin θ. So α = ± sin−1
(

±R
d

sin θ
)

. Since θ can

equal π
8

or 3π
8

, α = ± sin−1
(

±R
d

sin π
8

)

or α = ± sin−1
(

±R
d

sin 3π
8

)

.

When both are defined, both solutions work, when only one is defined,
only that solution works and when neither is defined, there are no
solutions.

4. (Solution by Andrew Jeanguenat, Andrew placed third in the 2008 Ket-

tering Math Olympiad)
Since w, x, y, z are distinct and the 4 equations are symmetric, we can
assume WLOG that w > x > y > z. Also, since z3 = w2 +x2 +y2, and
w2 + x2 + y2 ≥ 0, z ≥ 0, if z = 0 then 0 = x2 + y2 + z2 ⇒ x, y, z = 0.
This is a contradiction, therefore z > 0.
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Thus w > x > y > z > 0.

Now, assume that w ≥ 3 then w3 = x2 +y2+z2 < 3w2. Thus w3 < 3w2

or w2(w − 3) < 0. However, if w ≥ 3, w2(w − 3) ≥ 0. This is a
contradiction. Therefore, 0 < w < 3.

Assume w < 3. Then we know w3 = x2 + y2 + z2, x3 = w2 + y2 + z2,
y3 = w2 + x2 + z2, and z3 = w2 + x2 + y2. So
w3 + x3 + y3 + z3 = 3w2 + 2x2 + 3y2 + 3z2

⇒ (w3 − 3w2) + (x3 − 3x2) + (y3 − 3y2) + (z3 − 3z2) = 0.

However, if 0 < a < 3 then a2(a − 3) < 0 ⇒ a3 − 3a2 < 0. Thus the 4
terms in parentheses above are all less than 0. This is a contradiction.
Therefore, it is impossible to find 4 distinct real numbers such that the
cube of every number equals the sum of squares of the other 3 numbers.

5. (Solution by David Sherman, David came in 2nd in the 2008 Kettering

Math Olympiad)
We first prove a lemma:
Lemma: Given n ∈ N , there is a Fibonacci number fk such that
1

2
n < fk ≤ n.

Proof: First note that for n = 1, f1 = 1 suffices. When n = 2, f2 = 2
suffice. Thus assume statement true for n > 2. Consider all Fibonacci
numbers less than or equal to n : 1, 2, f3, . . . fk. Suppose BWOC that
fk ≤ 1

2
n. Then consider fk−1 + fk = fk+1. Since fk−1 ≤ fk ≤ 1

2
n we

have fk+1 = fk−1 + fk ≤ 1

2
n + 1

2
n = n. Then our list was not complete.

This is a contradiction and the lemma is proven.

We prove the actual result by strong induction on n. As a base case,
consider n = 1 = f1.

Now, assume the claim for all cases up to some n − 1. Consider case
n > 2. By the lemma, ∃k such that 1

2
n > fk ≤ n. Then n − fk is an

integer such that 0 ≤ n − fk < 1

n
. If n − fk = 0 use n = fk and we are

done. Otherwise 1 ≤ n − fk < 1

2
n ≤ n − 1.(truebecausen≥ 2). By the

induction hypothesis, n − fk is the sum of unique Fibonacci numbers:
n − fk = fα + fβ + · · · + fω, 1 ≤ fα < fβ < · · · < fω. Then obviously
n = fα + fβ + · · · + fω + fk. We need only check that it is distinct.

Suppose BWOC that two of the Fibonacci numbers in the sum are
equal. Then obviously fk is one of the two since the rest are given to
be distinct. We would have fi = fk where i ∈ {α, β, , ω}. Then since fi
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are all positive and n−fk = fα +fβ + · · ·+fω we must have fi < n−fk

but n − fk < 1

2
n and 1

2
n < fk thus fi < n − frk < 1

2
n < fk ⇒ fi < fk.

This is a contradiction and so it is must be distinct.

6. (Solution by Allen Yuan, Allen is the winner of the 2008 Kettering

Math Olympiad) There always exists such a broken line.
Proof: (all number have units of m) Square ABCD is the unit square.

A B

C D

P1

P2

P3

Q1

Q2

Q100

Q99
P100

P99

Q3

Consider the broken line Q1P1P2A2Q3P3P4 . . . P100Q100 which is out-
lined in blue such that AP1 = BQ1 = DQ100 = CP100 = 1

200
and

P1P2 = P2P3 = . . . = P99P100 = Q1Q2 = . . . Q99Q100 = 1

100
. All

PiQi are parallel to AB and CD. The length of this broken line is
101 − 1

100
< 101.

Now, note that any point in ABCD is within 1

200
of this broken line.

Therefore, start at Q1 and walk on the path. Every time time you are
within 1

200
of a point (directly above or below) walk to the point and

then an arbitrarily small distance to the side, then walk directly back
to the line. The extra length you travel is at most 2 × 1

200
= 1

100
per

point. Since there are 10000 points, the total extra length you travel is
at most 10000× 1

100
= 100 and because all points in ABCD are within

1

200
of the line, so we will hit all points. The total path, then is at

most
(

101 − 1

100

)

+100 < 201. Hence, this path that you walked is the
desired broken line.
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