
Kettering University Mathematics Olympiad For High
School Students 2006, Sample Solutions

1. (Solution by Nicholas Triantafillou, a 4th-7th finisher)
Since we know that the product of the three boys ages is 36, we make a
list of the possible ages of the three boys, from youngest to oldest. Thus,

Table 1: Table of Possible Ages and the Sum of the Ages
Ages Sum
1,1,36 38
1,2,18 21
1,3,12 16
1,4,9 14
1,6,6 13
2,2, 9 13
2,3,6 11
3,3,4 10

one of these sums must be the number of windows in the chemist and
mathematician’s high school. However, since the mathematician is left
with indecision about the children’s ages, the sum must be repeated. The
only value to satisfy this is 13. Therefore the children are either 1,6 and
6 or 2,2 and 9. Since we know that one child is oldest, however, the
combination 1,6,6 is not possible. The three son’s ages are 2,2 and 9.

2. (Solution by Philip Hu, Philip placed second in the 2006 Kettering Math
Olympiad.)
A square of side length

√
2r can be inscribed in the incircle.

r

If the square is oriented so that one of its sides is parallel
to the base of the triangle (consider the side that is closer to the base since
two sides with ultimately be parallel), that side will not touch the base
since it subtends a 90o arc of the incircle. This square is obviously too
small.

If the side length is 2r, it can be circumscribed around the incircle:
2r

If it is oriented so that one side is parallel to the base,
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(again, consider the side that is closer to the base since two sides with
ultimately be parallel), the two vertices on that side will be on the base
since both the side and the base are tangent to the incircle. Since two
angle of a triangle can’t be greater than or equal to 90o, consider one side
of the triangle that intersects the base such that it forms an acute angle
in the triangle.

Since it is tangent to the incircle and not parallel
to either sides parallel to the base or sides perpendicular to the base, it
must cut off a top corner of the square. Thus, the square is too large to
be inscribed in the triangle as desired.

3. (Sample Solution:)
Denote the 100 numbers by: x1, x2, . . . , x100. Consider the following sums:

S1 = x1

S2 = x1 + x2

...
...

Sk = x1 + x2 + · · ·xk

...
...

S100 = x1 + x2 + · · ·x100.

We can represent Si = 100ki + ri where ri denotes the remainder of Si

when divided by 100, hence 0 ≤ ri ≤ 99. Since we have exactly 100 sums,
there is either some i such that ri = 0 or there exists at least 2 indices
i and j, i > j such that ri = rj . If there is i such that ri = 0 then Si

is divisible by 100 and we are done. For the remaining possibility, set
S = Si − Sj = xj+1 + xj+2 + · · ·xi = 100ki − 100kj , then clearly S is
divisible by 100.

4. (Solution by Saurabh Pandey, a 4th-7th finisher)

• If both a and b are odd. Then ab will be odd and ba will be odd, so
ab + ba will be even. Contradiction.

• If a and b are both even, then ab will be even and ba will be even, so
ab + ba will be even. Contradiction.

• So one of a or b must be odd; the other is even. WLOG, let a be odd
and b be even. The only even prime number is 2 so b is 2.
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Our problem is now reduced to finding, for which primes a is a2 + 2a a
prime.
If a = 3, we have 32 + 23 = 17, a prime number.
If a is a prime greater than 3, we have

a ≡ 1(mod 3) or a ≡ 2(mod 3) (1)

because if a ≡ 0(mod 3), and a > 4, then a would be a multiple of 3 and
wouldn’t be prime anymore.

We then see that a2 ≡ 1(mod 3) by squaring both congruences in Condi-
tion (1) and taking mod 3.

2a when a is a prime greater than 3, can be rewritten as 22c+1 where c is
integral and greater than 0. Now

22c+1 = 2(22c) = 2(4c) = 2(3 + 1)c ≡ 2(1)c(mod 3) ≡ 2(mod 3)

So 2a + a2 ≡ 2 + 1(mod 3) ≡ 0(mod 3) for all primes a greater than 3.
This implies 2a + a2 is a multiple of 3 and thus not prime. Contradiction.
So a = 3 and one solution is (a, b) = (3, 2). The other solution is just a
permutation of the first solution (a, b) = (2, 3).

5. (Solution by Chaitanya Malla, Chaitanya placed third in the 2006 Ketter-
ing Math Olympiad.)
We can convert the problem to Graph Theory terms. Let each airport
be a vertex and draw an edge between two vertices (airports) if the yare
connected. We are given that the graph is connected and have to prove
that removing a vertex does not disconnect the graph.

Let deg(x) be the degree (# of connections at x) of vertex x. For example
A

B
C: deg(A)=2, deg(B)=deg(C)=1.

We consider 2 cases: (i) There is a cycle in the graph. It there is a cycle
a1, a2, . . . , ai, ai then removing vertex aj only removes the edges aj−1aj

and ajaj+1 and the remaining vertices in the cycle are still connected.

(ii) If there is no cycle, then the graph is called a tree. We need to show
that there exists a vertex x such tath deg(x)=1 since removing x will
not disconnect the graph. This is clearly true for N=2 vertices. Assume
for some k that the tree with k vertices has a vertex of degree 1. Now
consider adding an extra vertex A to the tree with k vertices. If deg(A)=1,
then we are done. Assume to the contrary that deg(A)≥ 2. Then A is
joined to two distinct vertices B and C. But since B and C are part of
the original connected graph, there exists a path from B to C not through
A. Therefore, we have a cycle which is a contradiction since we said there
were no cycles. Therefore, deg(A)=1 and by induction we have proven
that a tress always has a vertex of degree 1.
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6. (Solution by Daniel Echlin, Daniel is the winner of the 2006 Kettering
Math Olympiad.)
We show xn + yn = zn, z ≤ n is insoluble in Z by showing there is
a problem with the size of xn + yn. We need to show xn + yn < mn.
Obviously x, y < m or else we get xn < 0 or yn < 0 but x, y > 0. The
biggest choice we can make is x = y = m− 1 or 2(m− 1)n < mn. Now

2(m− 1)n < mn

⇔ n
√

2(m− 1) < m

⇔ n
√

2m− n
√

2 < m

⇔ ( n
√

2− 1)m <
n
√

2

⇔ m <
n
√

2
n
√

2− 1

Because m ≤ n, if we can show n <
n
√

2
n
√

2− 1
, we’re in good shape.

n <
n
√

2
n
√

2− 1

⇔ 1
n

>
n
√

2− 1
n
√

2
(because both sides are positive and f(x) =

1
x

is decrasing on (0,∞),

we can do this and reverse the inequality)

⇔ 1
n

> 1− 1
n
√

2

⇔ 1
n
− 1 > − 1

n
√

2

⇔ 1− 1
n

<
1

n
√

2

⇔ n− 1
n

<
1

n
√

2

⇔
(

n− 1
n

)n

<
1
2

We may now apply the binomial theorem:

(
n− 1

n

)n

=
nn − nnn−1 +

(
n
2

)
nn−2 − · · · ± (−1)n

nn

=
nn − nn + · · · ± (−1)n

nn

=
(

n
2

)
n−2 −

(
n
3

)
n−3 + · · · ± (−1)nn−n
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If n ≥ 2, this expression is obviously bounded by

(
n
2

)

n2
which is less

than 1
2 . Hence whenever x, y < m ≤ n, xn + yn < mn.
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