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1. (Solution by Meelap Shah, a 4th-6th finisher)
Expanding the left side, we get

1+x2+x4+x6 = 4x3 ⇒ (x6−2x3+1)+(x4−2x3+x2) = 0 ⇒ (x3−1)2+x2(x−1)2 = 0.

Since all terms on the left hand side are non-negative, they both must be
zero. Hence we have

(x3 − 1)2 = 0 ⇒ x3 = 1 ⇒ x = 1.

and x2(x− 1)2 = 0 ⇒ x = 0 or x = 1.

So the only possible solution is x = 1.

2. (Solution by Frederic Sala, a 4th-6th finisher)
We show that since Nick goes first, there is a guaranteed strategy for him
to win. Let Nick takes 1 pebble on his first turn, leaving 99. now, if
John takes x pebbles (1 ≤ x ≤ 8), Nick will take 9 − x pebbles. So for
each pair of turns, 9 pebbles will be removed. After 10 turns, there will
be 99 − 9(10) = 0 pebbles left. Whatever number, between 1 and 8, of
pebbles John takes, Nick can take the remaining number and win.

John can only be guaranteed to win if Nick doesn’t take 1 pebble on the
first turn. If Nick takes between 2 and 8 pebbles, there will be between 92
and 98 pebbles left. John should take enough to be left with 90. There-
after, John should take 9− x, where x is the number of pebbles that Nick
took. Again, we will be down to 9 pebbles when it is Nick’s turn, guaran-
teeing John a win. In general, either player should try to leave a multiple
of 9 pebbles for his opponent. The first to do so wins by following the
strategy above.

3. (Solution by Kevin Dilks, Mr Dilks placed third in the 2005 Kettering Math
Olympiad.)
First, note that cos12x = cos26x− sin2 6x = 1− 2 sin2 6x. So we need to
show that

sin x(sinx + sin 3x + sin 5x + · · · sin 11x) = sin2 6x.

We see that

sin x = sin(6x− 5x) = sin 6x cos 5x− sin 5x cos 6x

sin 11x = sin(6x + 5x) = sin 6x cos 5x + sin 5x cos 6x

⇒ sin x + sin 11x = 2 sin 6x cos 5x.

Similar we can be obtain the following identities:

sin 3x + sin 9x = 2 sin 6x cos 3x,

sin 3x + sin 9x = 2 sin 6x cosx.
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Hence we need to show that

2 sin x sin 6x(cos x + cos 3x + cos 5x) = sin2 6x.

Or equivalently, we need to show that

2 sin x(cos x + cos 3x + cos 5x) = sin 6x.

cos 5x = cos(4x + x) = cos 4x cos x− sin 4x sinx

cos 3x = cos(4x− x) = cos 4x cos x + sin 4x sinx

⇒ cos 3x + cos 5x = 2 cos 4x cosx.

So

2 sin x cos x(1+2 cos 4x) = 2 sin x cos x[1+2(2 cos2 2x−1)] = sin 2x(4 cos2 2x−1).

Working with the right hand side, we have

sin 6x = sin(4x + 2x) = sin 4x cos 2x + sin 2x cos 4x

= 2 sin 2x cos2 2x + sin 2x cos 4x

= sin 2x(2 cos2 2x + cos 4x)
= sin 2x(2 cos2 2x + 2 cos2 2x− 1)
= sin 2x(4 cos2 2x− 1)

which equals the left hand side. Thus the equality holds.

4. (Solution by Bohao Pan, a 4th-6th finisher)
Nick starts off with 7 pieces. Suppose Nick cuts n1 pieces. Then he now
has:
7− n1 + 7n1 = 7 + 6n1 pieces.

In the next turn, Nick cuts n2 pieces. He now has:
(7 + 6n1)− n2 + 7n2 = 7 + 6(n1 + n2) pieces.

In the kth turn, Nick cuts nk pieces. He now has:
[(7 + 6(n1 + n2 + · · ·+ nk−1)]− nk + 7nk = 7 + 6(n1 + n2 + · · ·nk) pieces.

Nick claims that he now has 2000 pieces. That is,

7 + 6(n1 + n2 + · · ·nk) = 2000 ⇒ 6(n1 + n2 + · · ·nk) = 1993.

Since 1993 is not divisible by 6, no integer values n1, n2, . . . nk satisfies the
above. Thus John concludes that Nick made an error.
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5. (Sample Solution:)From the shown diagram, we see that

Area(ACM) = Area(AMD)

⇒ 1
2
|AC||AM | sin(3a) =

1
2
|AM ||AD| sin(a)

⇒ |AC| sin(3a) = |AD| sin(a)

⇒ |AD| = sin(3a)
sin(a)

|AC|
Also

|AH| = |AC| cos(a) = |AD| cos(3a)

⇒ |AD| = cos(a)
cos(3a)

|AC|

⇒ sin(3a)
sin(a)

=
cos(a)
cos(3a)

⇒ sin(3a) cos(3a)− sin(a) cos(a) = 0

⇒ 1
2

sin(6a)− 1
2

sin(2a) = 0

⇒ 1
2

(
sin(2a) cos(4a) + sin(4a) cos(2a)− sin 2a

)
= 0

⇒ 1
2

(
sin(2a) cos(4a) + 2 sin(2a) cos2(2a)− sin 2a

)
= 0

⇒ sin(2a) cos(4a) = 0

where 0 < 4a < π ⇒ 0 < a < π
4 ⇒ sin(2a) 6= 0. Hence cos(4a) = 0 ⇒

4a = π
2 ⇒ a = π

8 .

Figure 1: Diagram For Question 5
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6. (a) (Solution by Alex Xu, Mr Xu placed second in the 2005 Kettering
Math Olympiad.)
First every city must contain a connection. Since two cities require
one line to be connected, adding a city adds a minimum of one line
in order for the new city to be connected. Thus, for n cities, a
minimum of n−1 connectors is needed just to connect all of the cities.
For k = 1, each city must be connected to every other city. Thus(

100
2

)
= (100)(99)

2 = 4950 airlines are needed. For k = 2, each city

can be connected to a single city. This uses n− 1 connections, which
is the minimum number of connections. This setup also satisfies all
k > 2.
One possibles scheme is to connect city 1 to every other city. This
gives 99 connections.

(b) (Sample Solution:) If all cities are connected to each other, there
is nothing to prove. So let’s divide the 100 cities into two distinct
groups, A and B respectively, where no cities in group A is connected
to cities in group B. Let the number of cities in group A be k, then the
number of cities in group B is 100− k. The total number of airlines
needed to ensure that all cities in group A is connected directly is:

(k − 1) + (k − 2) + · · ·+ 1 =
k(k − 1)

2
.

Similarly, The total number of airlines needed to ensure that all cities
in group B is connected directly is:

(99− k) + (98− k) + · · ·+ 1 =
(99− k)(100− k)

2
.

The total number of airlines needed thus far is:

T (k) =
k(k − 1)

2
+

(99− k)(100− k)
2

= k2−100k+4950 = (k−50)2+2450, 1 ≤ k ≤ 99.

The above parabola attains its maximum in the allowable range of k
at k = 1 and k = 99 with T(1)=T(99)=4851. So with 4852 airlines
we can use the remaining airline to connect any city in group A to
group B.
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