Always rework my examples SUCCESSFULLY on your own BEFORE attempting the homework.

1. What causes truncation error? Do not merely think the answer. Write your answer in a complete and coherent sentence.
2. Both $x_{1}=2.0008631896735362$ and $x_{2}=2.0000526243411856$ are approximations of an exact quantity $x^{*}=2$.
(a) What is the permyriad error of x_{1} ?
ANSWER: $-4.3159 \% 00$
(b) What is the permyriad error of x_{2} ?
ANSWER: $-0.26312 \% 00$
(c) How much more accurate is x_{2} than x_{1} ?

ANSWER: The error of x_{1} is about 16.4 times larger than the error of x_{2}. So x_{2} is about 16.4 times more accurate than x_{1}.
3. What is meant by machine epsilon? (Study the notes. Do not merely think the answer. Write your answer in a complete and coherent sentence.)
4. What is the difference between the words precise and accurate? Use a dictionary if necessary.
5. Look up the meaning of the word algorithm. Use a dictionary if necessary.
6. Of the following errors, which errors have units and which do not?
a) absolute error,
b) relative error,
c) percent error,
d) permille error,
e) error in ppm

Complete the remaining problems below AFTER we discuss rounding and chopping computers.
7. How is π stored on a 4 digit chopping computer?
8. How is π stored on a 4 digit rounding computer?
9. In class we evaluated (or we will) the expression

$$
\frac{x^{2}+10 \cos x}{4 x}
$$

ANSWER: 3.141
ANSWER: 3.142
at $x=\pi$ using 3 digit chopping arithmetic.
Evaluate (1) at $x=\pi$ using 3 digit rounding arithmetic.
ANSWER: - 0.0111 Yes, that IS the result you should get if you do it correctly!
10. Evaluate expression (1) at $x=\pi$ using 4 digit chopping arithmetic.

ANSWER: - 0.01066 Yes, that IS the result you should get if you do it correctly!

