MATH 305

If exact arithmetic is used to evaluate the polynomial

$$
\begin{equation*}
f(x)=2.753 x^{3}-2.958 x^{2}+3.169 x-4.675 \tag{1}
\end{equation*}
$$

at $x=1.077$, the result is -1.253889535651 . In nested form, the same polynomial is

$$
\begin{equation*}
f(x)=((2.753 x-2.958) x+3.169) x-4.675 \tag{2}
\end{equation*}
$$

- How many multiplications are there in form (1)? How many additions/subtractions?
- How many multiplications are there in form (2)? How many additions/subtractions?

1. Evaluate the polynomial (2) at $x=1.077$ using
(a) exact arithmetic,
(b) 3-digit chopping arithmetic ${ }^{1}$

Answer: - 1.32 (Yes, that is the answer you're supposed to get.)
(c) 3-digit rounding arithmetic ${ }^{2}$

Answer: -1.25 (Yes, that is the answer you're supposed to get.)
2. Determine the absolute error and the percent error in the results from (b) and (c).
3. Use Maple to evaluate the polynomial at $x=1.077$.

Write the following polynomials in nested form.

1. $f(x)=x^{7}-6 x^{6}+3 x^{4}-2 x^{3}+12 x+5$
answer: $\quad f(x)=\left(\left(\left((x-6) x^{2}+3\right) x-2\right) x^{2}+12\right) x+5$
2. $f(x)=8 x^{2}-4 x^{5}+2 x^{6}-9+x^{8}$
answer: $\quad f(x)=\left(\left(\left(x^{2}+2\right) x-4\right) x^{3}+8\right) x^{2}-9$

Prof. K. TeBeest, Kettering University

file: nested.tex
10/05/2023

[^0]
[^0]: ${ }^{1}$ Be careful! How is 1.077 stored on a 3 -digit chopping computer?
 ${ }^{2}$ Be careful! How is 1.077 stored on a 3 -digit rounding computer?

