MATH 305 Polynomials – Nested Form

If exact arithmetic is used to evaluate the polynomial

$$f(x) = 2.753 x^3 - 2.958 x^2 + 3.169 x - 4.675$$
⁽¹⁾

at x = 1.077, the result is $-1.2538\ 8953\ 5651$. In *nested form*, the same polynomial is

$$f(x) = ((2.753 x - 2.958) x + 3.169) x - 4.675.$$
⁽²⁾

- How many multiplications are there in form (1)? How many additions/subtractions?
- How many multiplications are there in form (2)? How many additions/subtractions?
 - 1. Evaluate the polynomial (2) at x = 1.077 using
 - (a) exact arithmetic,
 - (b) 3-digit chopping arithmetic¹ Answer: -1.32 (Yes, that *is* the answer you're supposed to get.)
 - (c) 3-digit rounding arithmetic² Answer: -1.25 (Yes, that *is* the answer you're supposed to get.)
 - 2. Determine the absolute error and the percent error in the results from (b) and (c).
 - 3. Use Maple to evaluate the polynomial at x = 1.077.

Write the following polynomials in nested form.

- 1. $f(x) = x^7 6x^6 + 3x^4 2x^3 + 12x + 5$ answer: $f(x) = ((((x-6)x^2 + 3)x - 2)x^2 + 12)x + 5)$
- 2. $f(x) = 8x^2 4x^5 + 2x^6 9 + x^8$ answer: $f(x) = (((x^2 + 2)x - 4)x^3 + 8)x^2 - 9$

Prof. K. TeBeest, Kettering University

file: nested.tex

10/05/2023

¹Be careful! How is 1.077 stored on a 3-digit chopping computer?

²Be careful! How is 1.077 stored on a 3-digit rounding computer?